1,151 research outputs found

    Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions

    Get PDF
    The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature

    Muon Spin Relaxation and Susceptibility Studies of Pure and Doped Spin 1/2 Kagom\'{e}-like system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O

    Full text link
    Muon spin relaxation (μ\muSR) and magnetic susceptibility measurements have been performed on the pure and diluted spin 1/2 kagom\'{e} system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O. In the pure x=1x=1 system we found a slowing down of Cu spin fluctuations with decreasing temperature towards T1T \sim 1 K, followed by slow and nearly temperature-independent spin fluctuations persisting down to TT = 50 mK, indicative of quantum fluctuations. No indication of static spin freezing was detected in either of the pure (xx=1.0) or diluted samples. The observed magnitude of fluctuating fields indicates that the slow spin fluctuations represent an intrinsic property of kagom\'e network rather than impurity spins.Comment: 4 pges, 4 color figures, Phys. Rev. Lett. in pres

    Muon Spin Relaxation Studies of Magnetic-Field-Induced Effects in High-TcT_{c} Superconductors

    Full text link
    Muon spin relaxation (μ\muSR) measurements in high transverse magnetic fields (c^\parallel \hat c) revealed strong field-induced quasi-static magnetism in the underdoped and Eu doped (La,Sr)2_{2}CuO4_{4} and La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}, existing well above TcT_{c} and TNT_{N}. The susceptibility-counterpart of Cu spin polarization, derived from the muon spin relaxation rate, exhibits a divergent behavior towards T25T \sim 25 K. No field-induced magnetism was detected in overdoped La1.81_{1.81}Sr0.19_{0.19}CuO4_{4}, optimally doped Bi2212, and Zn-doped YBa2_{2}Cu3_{3}O7_{7}.Comment: 4 pages, 4 color figure

    Analytical solutions for two heteronuclear atoms in a ring trap

    Full text link
    We consider two heteronuclear atoms interacting with a short-range δ\delta potential and confined in a ring trap. By taking the Bethe-ansatz-type wavefunction and considering the periodic boundary condition properly, we derive analytical solutions for the heteronuclear system. The eigen-energies represented in terms of quasi-momentums can then be determined by solving a set of coupled equations. We present a number of results, which display different features from the case of identical atoms. Our result can be reduced to the well-known Lieb-Liniger solution when two interacting atoms have the same masses.Comment: 6 pages, 6 figure

    Site-Dilution in quasi one-dimensional antiferromagnet Sr2(Cu1-xPdx)O3: reduction of Neel Temperature and spatial distribution of ordered moment sizes

    Full text link
    We investigate the Neel temperature of Sr2CuO3 as a function of the site dilution at the Cu (S=1/2) sites with Pd (S=0), utilizing the muon spin relaxation (muSR) technique. The Neel temperature, which is Tn=5.4K for the undoped system, becomes significantly reduced for less than one percent of doping Pd, giving a support for the previous proposal for the good one-dimensionality. The Pd concentration dependence of the Neel temperature is compared with a recent theoretical study (S. Eggert, I. Affleck and M.D.P. Horton, Phys. Rev. Lett. 89, 47202 (2002)) of weakly coupled one-dimensional antiferromagnetic chains of S=1/2 spins, and a quantitative agreement is found. The inhomogeneity of the ordered moment sizes is characterized by the muSR time spectra. We propose a model that the ordered moment size recovers away from the dopant S=0 sites with a recovery length of \xi = 150-200 sites. The origin of the finite recovery length \xi for the gapless S=1/2 antiferromagnetic chain is compared to the estimate based on the effective staggered magnetic field from the neighboring chains.Comment: 10 pages, 9 figures, submitted to PR

    A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease

    Get PDF
    Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz

    Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients

    Get PDF
    ATP-binding-cassette-transporter-A1 (ABCA1) plays a pivotal role in intracellular cholesterol removal, exerting a protective effect against atherosclerosis. ABCA1 gene severe mutations underlie Tangier disease, a rare Mendelian disorder that can lead to premature coronary artery disease (CAD), with age of CAD onset being two decades earlier in mutant homozygotes and one decade earlier in heterozygotes than in mutation non-carriers. It is unknown whether common polymorphisms in ABCA1 could influence age of symptom onset of CAD in the general population. We examined common promoter and non-synonymous coding polymorphisms in relation to age of symptom onset in a group of CAD patients (n = 1164), and also carried out in vitro assays to test effects of the promoter variations on ABCA1 promoter transcriptional activity and effects of the coding variations on ABCA1 function in mediating cellular cholesterol efflux. Age of symptom onset was found to be associated with the promoter − 407G > C polymorphism, being 2.82 years higher in C allele homozygotes than in G allele homozygotes and intermediate in heterozygotes (61.54, 59.79 and 58.72 years, respectively; P = 0.002). In agreement, patients carrying ABCA1 haplotypes containing the −407C allele had higher age of symptom onset. Patients of the G/G or G/C genotype of the −407G > C polymorphism had significant coronary artery stenosis (>75%) at a younger age than those of the C/C genotype (P = 0.003). Reporter gene assays showed that ABCA1 haplotypes bearing the −407C allele had higher promoter activity than haplotypes with the −407G allele. Functional analyses of the coding polymorphisms showed an effect of the V825I substitution on ABCA1 function, with the 825I variant having higher activity in mediating cholesterol efflux than the wild-type (825V). A trend towards higher symptom onset age in 825I allele carriers was observed. The data indicate an influence of common ABCA1 functional polymorphisms on age of symptom onset in CAD patient
    corecore