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Jumps and stochastic volatility in crude oil prices and
advances in average option pricing

Ioannis Kyriakou∗, Panos K. Pouliasis and Nikos C. Papapostolou

Cass Business School, City University London, 106 Bunhill Row, London EC1Y 8TZ, UK

(July 21, 2016)

Crude oil derivatives form an important part of the global derivatives market. In this paper, we focus on 
Asian options which are favoured by risk managers being effective and cost-saving hedging instruments.
The paper has both empirical and theoretical contributions: we conduct an empirical analysis of the crude
oil price dynamics and develop an accurate pricing setup for arithmetic Asian options with discrete and 
continuous monitoring featuring stochastic volatility and discontinuous underlying asset price movements.
Our theoretical contribution is applicable to various commodities exhibiting similar stylized properties.
We here estimate the stochastic volatility model with price jumps as well as the nested model with omitted 
jumps to NYMEX WTI futures vanilla options. We find that price jumps and stochastic volatility are 
necessary to fit options. Despite the averaging effect, we show that Asian options remain sensitive to 
jump risk and that ignoring the discontinuities can lead to substantial mispricings.
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1. Introduction

The price of crude oil and oil products has taken centre stage in recent years among the leading
indicators of the economy and is now always quoted when forecasting economic trends. This has
occurred together with the growing acceptance of commodities as a mainstream financial and
investment class, with the resulting growth in the volume and variety of financial products linked
to them (see Campi and Galdenzi 2015). In general, the volume of exchanged-traded commodity
derivatives has grown steadily since their introduction in the late 1980s. Focusing on the most recent
years, as shown in Figure 1, the volume of crude oil futures and options has reached, respectively,
up to 50% and 60% of the total energy contracts traded on NYMEX in 2015. This raises the
importance of accurate pricing of commodity derivatives.
Risk managers use commodity options to hedge price risk. In particular, average (Asian) options,

whose payoff is contingent on the average price of the underlying asset during a pre-specified time
window, are popular for the risk management of commodity futures due to lower volatility of the
average price compared to the price of the underlying asset (see Figure 2), hence are cheaper than
plain vanilla options. Arithmetic averages prevent momentarily wild fluctuations from affecting
transactions of large exchanged quantities, for example, of oil due to the time lapsed between
the day a tanker leaves the production site until it reaches its destination (Geman 2005). For
this, commodity Asian options are widely traded over-the-counter (OTC) and, in the recent years,
options on futures, particularly on crude oil, have been introduced in exchanges worldwide and
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Figure 1. Volumes of crude oil futures and options as % of total energy contracts traded on NYMEX. Source: CME
Group (as of April 2015).
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Figure 2. One-year-ahead simulated paths of crude oil price dynamics (daily) and of time-averaged prices (latter
much less dispersed).

seen significant trading volume increases (see Alexander and Venkatramanan 2008). Asian options
may have a fixed or a floating strike price. Also, averaging commencement may coincide with the
inception of the contract or a forward date (forward start option). Finally, contracts which involve
trades with different volumes over a period of time might use volume-weighted averages.
In light of the above, in the first part of the paper we perform a comprehensive empirical analysis

of the crude oil prices. We consider daily WTI crude oil prices from April 11, 1983 to February
3, 2015. Our study concludes that there are systematic departures from the benchmark lognormal
process which describe the crude oil price dynamics. More specifically, we find evidence of serial
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dependence in the squared log-returns and that returns and their volatilities are negatively corre-
lated in consistency with evidence by Trolle and Schwartz (2009), Larsson and Nossman (2011) and
Geman and Shih (2009) in the post-2000 era. In addition, we find that mean-reversion is strongly
rejected over the whole sample period and explain that seasonal patterns are absent from the term
structure of futures prices. In light of these empirical facts about the crude oil prices, we adopt the
stochastic volatility model of Heston (1993) and the Bates (1996) model overlaid with price jumps
of random magnitude and arrival. We calibrate the two models to the prices of liquid WTI futures
American vanilla options trading on the NYMEX division of the CME Group. We find that the
fitted models are capable of mimicking volatility clustering, exhibit Samuelson’s maturity effect,
that is, a decaying term structure of volatility which is commonly observed in commodities markets,
and negative correlation between volatility movements and log-returns, which is often interpreted
in terms of the so-called leverage effect, i.e., the empirical observation that large downward moves
in the price are associated with upward moves in volatility. When calibrating to batches of vanilla
option prices with different strikes for given maturity, we find that the Bates model yields lower
pricing error across different maturities implying the importance of modelling price discontinuities
in order to flexibly describe abrupt changes in the WTI prices.
In the second part of the paper, we provide the development of our pricing methodology for

arithmetic Asian options under stochastic volatility, in particular, the Heston and Bates models.
Although a large volume of publications has been devoted to the pricing of Asian options, most
of them rely on one-dimensional processes which may not always be able to reproduce certain
stylized properties of asset prices, as in the case of commodities. Earlier contributions allowing for
stochastic volatility are fewer and either represent price approximations for the arithmetic aver-
age option or are related to the less common geometric average option. We mention, for example,
Fouque and Han (2003) who employ a PDE approach on a reduced state space in a purely diffusive
model framework based on fast mean-reverting stochastic volatility asymptotic analysis. Based on
the same principles, Wong and Cheung (2004) and Fouque and Han (2004) provide price approx-
imations for continuously monitored geometric average options for further use as control variates
in generating price estimates for the more prevalent arithmetic options. Tahani (2013) and Kim
and Wee (2014) derive exact expressions for continuous geometric options under the square root
variance model with/out mean-reverting log-asset price dynamics, whereas Hubalek et al. (2014)
develop a pricing framework in a general affine stochastic volatility (ASV) model setup. Shiraya
and Takahashi (2011) propose an approximation formula for pricing average options under the
Heston and extended SABR stochastic volatility models. Using the principles set out in Curran
(1994) and Rogers and Shi (1995), Dingeç et al. (2015) and, independently, Fusai and Kyriakou
(2016) derive lower bounds under ASV models. Finally, Ewald et al. (2013) propose a solution
by means of a PDE and a Monte Carlo simulation method, whereas Yamazaki (2014) a pricing
formula based on the Gram–Charlier expansion.
Although we focus here on the Heston and Bates models, the method we propose is univer-

sally applicable to ASV models with known joint laws of the underlying (log) asset price and
the variance via the associated characteristic functions. Exploiting this knowledge together with
favourable option price convolution structure in the log-return dimension, we evaluate discrete
arithmetic Asian options by means of Fourier transform, combined with numerical integration in
the variance dimension. Our method is distinguished from previous contributions due to a number
of appealing features, filling an important long-standing gap in the literature. First, it converges
perfectly smoothly in the number of integration points, hence is suitable for further improvement
through simple Richardson extrapolation leading to very high levels of precision. The convergence
is also smooth in the number of monitoring dates, hence by the same means we can also obtain the
price of a continuously monitored Asian option. Second, it can be applied to general ASV processes,
such as time changed Lévy processes by integrated square root or Lévy-driven Ornstein–Uhlenbeck
variance processes. Third, by direct differentiation of our pricing integrals, one can obtain exact
representations of the option price sensitivities with respect to parameters of interest. Fourth, our
method allows moving across monitoring dates without any intermediate time-discretization re-
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quired by standard stochastic volatility Monte Carlo simulation schemes with significant impact
on their order of convergence due to inborn bias, and, finally, it is free of any form of approximation
error which can be hard to quantify.
To make concrete our study of the arithmetic Asian options, in the last part of the paper we

apply to the case of crude oil options. As NYMEX WTI crude oil average options are primarily
traded OTC, we evaluate these using the parameter estimates from our original calibration to WTI
futures American vanilla options. We back up our claim for the importance of our work by showing
that, although Asian options involve an averaging procedure which reduces the fluctuation of the
underlying asset price process, they remain sensitive to jump risk and ignoring the discontinuities
can lead to nontrivial mispricings.
We conclude this Introduction by noting that the use of our average option pricing framework is

not limited to energy commodities but can be flexibly applied to other asset classes, from equities
to foreign exchange to agriculturals and metals, exhibiting similar stylized features. We mention
few examples to stress how the interest in average options is broader than just a purely challenging
pricing task:

• In agricultural markets, where the underlying spot price is not easily identifiable, a “large
player” may push the market up or down on a given day; this exercise of market power
becomes more problematic in the case of average options (Geman 2005).

• Charterers operating in the freight market typically face freight rate exposure during a voyage.
As the freight revenue process for a ship in the physical spot market is given by discretely
sampled prices in this period, most freight derivatives are settled against an average of these
spot freight rates published by the Baltic Exchange in response to concerns about potential
market manipulation by large participants. Currently, liquidity in the freight options market
is focused on the indices in the Capesize and Panamax drybulk sectors (see Nomikos et al.
2013).

• The London Metal Exchange offers Traded Average Price Options (TAPOs) giving the metal
community a flexible way of hedging against fluctuations in the Monthly Average Settle-
ment Price (MASP) for several metals. This is particularly useful as a large proportion of
physical contracts are negotiated on the basis of the MASP (www.lme.com/trading/contract-
types/tapos/).

• In foreign exchange markets, using weighted average options to hedge a stream of (received)
payments (e.g., a USD average call can be bought to hedge the ongoing EUR revenues of a
US-based company) can be much cheaper than using a stream of vanilla options (Wystup
2006).

The rest of this paper is organized as follows. In Section 2 we discuss the stylized facts of the
crude oil market. Section 3 introduces the proposed stochastic volatility models for the crude
oil price and presents their distributional properties. Section 4 describes the data and the model
calibration. Section 5.1 presents the theoretical results of the paper and establishes our recursive-
integral approach to valuing Asian options under stochastic volatility and price jumps, Section
5.2 the details of the numerical implementation, whereas Section 5.3 our application in pricing
commodity options. Section 6 concludes.

2. Analysis of crude oil prices

In what follows, we examine the stylized properties of the spot series. The spot time series is
obtained from Thomson Reuters Datastream for the period April 11, 1983 to February 3, 2015,
i.e., 7,982 daily observations. First, we consider the whole sample of spot prices; in addition, we
partition the entire set into two subsamples (Geman and Shih 2009): “pre-2000” period (April 11,
1983 to December 30, 1999, i.e., 4,200 observations) and “post-2000” period (January 3, 2000 to
February 3, 2015, i.e., 3,782 observations).

4



Table 1. Descriptive statistics and tests of crude oil spot price returns.

Whole sample Subsample estimates Rolling window estimates

Pre-2000 Post-2000 90% CI: 1,260 obs
Panel A. Descriptive statistics of log-returns
Mean (%) 1.605 -0.819 4.282 [-9.403, 21.05]
Vol (%) 39.82 40.896 38.618 [28.21, 51.54]
Skew -0.971 -1.65 -0.076 [-2.874, 0.378]
Exc. kurt. 23.35 36.25 5.197 [0.978, 49.10]
JB stat. 183,000a 231,787a 4,282a [61.73, 128,279] {0.00}
KS stat. 0.089a 0.095a 0.081a [0.044, 0.134] {0.00}
Q2(1) 356.6a 201.9a 85.67a [3.016, 96.97] {4.20}
Q2(5) 651.9a 322. 6a 660.2a [13.83, 495.0] {1.10}
Q2(10) 1,114a 557.1a 1,197a [24.12, 787.0] {1.40}

Panel B. GARCH model estimates
a0 0.015a 0.013a 0.027a [0.019, 1.207] {0.70}
a1 0.073a 0.082a 0.053a [0.037, 0.141] {0.00}
a2 0.926a 0.917a 0.943a [0.695, 0.944] {0.00}

Residual diagnostics
Skew -0.381 -0.471 -0.288 [-0.834, 0.076]
Exc. kurt. 3.397 4.866 1.964 [0.465, 8.737]
JB stat. 4,041a 4,297a 663.5a [12.57, 4,155] {1.51}
KS stat. 0.040a 0.052a 0.026b [0.023, 0.067] {26.9}
Q2(1) 2.167 0.404 4.292c [0.003, 5.864] {86.9}
Q2(5) 6.657 3.565 6.685 [0.785, 9.977] {92.7}
Q2(10) 21.98b 13.3 17.25c [2.950, 18.17] {90.8}

Panel C. Unit root tests on log-price levels
ADF -1.560 -3.029b -1.850 [-2.985, -0.774] {15.9}
PP -1.537 -3.093b -1.798 [-3.063, -0.581] {10.7}

The table presents the results of our analysis over the whole sample period April 11,
1983 to February 3, 2015, i.e., 7,982 daily observations (obs.), and the two sub-periods:
“pre-2000” (April 11, 1983 to December 30, 1999, i.e., 4,200 obs.) and “post-2000”
(January 3, 2000 to February 3, 2015, i.e., 3,782 obs.). Panel A presents the descrip-
tive statistics of the crude oil log-returns (vol: volatility, skew: skewness coefficient,
exc. kurt.: excess kurtosis). Jarque–Bera (JB) tests the null hypothesis of a normal
distribution for the sample log-return series. Kolmogorov–Smirnov (KS) tests the null
hypothesis of equality of the historical log-return distribution to a normal distribu-
tion. Q2(n) is the Ljung–Box Q statistic for the n-th order sample autocorrelation
of the squared log-return series (ARCH test of Engle 1982). Panel B presents the
estimates of the fitted GARCH(1,1) model on the demeaned log-return series εt; the
model is of the form σ2

t = a0 + a1ε2t−1 + a2σ2
t−1, where σ2

t is the variance pro-
cess. Residual diagnostics are also reported. In Panel C, we test the null hypothesis
that the crude oil log-price is non-stationary by employing two unit-root tests: aug-
mented Dickey–Fuller (ADF) and Phillips–Perron (PP). Superscripts a, b, c indicate
significance at the 1%, 5% and 10% levels, respectively. Rolling window estimates
are calculated using rolling five-year 6,722 subsamples of 1,260 obs. each. Figures in
[·] represent 90% confidence intervals (CI) of the estimates throughout the rolling
period. Where relevant, figures in {·} represent the % numbers of times that the null
hypothesis of the different tests cannot be rejected at the 10% significance level.

Panel A of Table 1 exhibits the descriptive statistics of the daily log-returns on the spot WTI
crude oil at Cushing, Oklahoma. The sample mean of the log-returns is relatively small, whereas
the volatility of the log-returns exceeds 38% per annum. Existing skewness and excess kurtosis
suggest that the log-return distribution is not normal. Likewise, the Jarque–Bera (JB) statistic
(Jarque and Bera 1980) rejects the null hypothesis of a normal distribution for the sample log-
return series. In addition, we employ the Kolmogorov–Smirnov test for equality of the historical
log-return distribution to a normal distribution; consistently with the JB statistic, this hypothesis
is rejected at the 1% level. We assess the null hypothesis of a white-noise process for the sample
squared log-returns by employing the Engle ARCH test (Engle 1982) based on the Ljung–Box
Q statistic (Ljung and Box 1978); the calculated values for the 1st, 5th and 10th order sample
autocorrelation suggest that there is significant evidence of serial dependence in the squared log-
returns (heteroscedasticity).
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Figure 3. Crude oil log-returns (a.i) and annualized spot volatility (a.ii) from GARCH model from April 11, 1983
to February 3, 2015 using daily crude oil prices, coupled with probability densities (Matlab’s kernel smoothing
function estimates) of standardized log-returns (b.i) and standardized GARCH residuals (b.ii) versus standard normal
distribution.

To quantify the time-dependence in the volatility series, Panel B of Table 1 reports the maximum
likelihood estimates of a simple GARCH(1,1) model; all coefficients are found significant at the 1%
level. Figure 3 plots the daily log-return series and the daily annualized volatility series dynamics
obtained from the GARCH model. Diagnostic tests on the standardized residuals indicate that by
filtering the log-returns using a simple GARCH model, the ARCH effects wear away (rejected at
the 1% significance level) and their distribution is closer to the normal; nevertheless, non-normality
and, to some extent, heteroscedasticity are still present. The distance of the historical distribution
from the normal is also illustrated in Figure 3 for the log-returns and the GARCH residuals.
As a robustness check, Table 1 reports the 90% confidence intervals of the abovementioned

statistics by means of a rolling window estimation. More specifically, the statistics are calculated
using rolling five-year subsamples1 (1,260 observations each). For example, the first JB statistic is
obtained using observations from the beginning of the sample period up to the 1,260th observation,
the second test statistic using data from the 2nd up to the 1,261st, etc., up to the last observation.
Where relevant, an associated rate is also shown, i.e., the % number of times that the p-value is
greater than 0.1. Overall, our results from the rolling window estimation are found consistent with
our original results.

1Ten-year rolling window estimates were also calculated and found qualitatively similar (available by the authors upon request).
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Furthermore, our sample log-price series are tested for mean-reversion by employing the aug-
mented Dickey and Fuller (1979, 1981) and Phillips and Perron (1988) unit-root tests (see Panel C
of Table 1); both tests indicate that log-spot prices follow a unit-root process, i.e., mean-reversion
is strongly rejected over the whole sample period and the 2000–2015 period, but not the 1983–
1999 period. Our conclusion is consistent with recent evidence against mean-reversion (e.g., see
Geman 2007, Geman and Shih 2009, Larsson and Nossman 2011). To discount the possibility that
stationarity is sample-specific, we use rolling unit-root tests that explicitly take into account the
possibility that a series may be more integrated during some periods or less so or not at all during
other periods. The augmented Dickey–Fuller and Phillips–Perron tests reject the null of a unit
root in only 15.9% and 10.7% of the total subsamples, respectively. Based on these results, in the
ensuing analysis we do not consider mean-reversion in the log-spot prices.
Discontinuous price movements can flexibly accommodate implicit skewness and kurtosis in op-

tion prices at short time horizons (e.g., see Bakshi et al. 1997). Jumps are a salient feature of
energy prices that is well-documented in the literature (e.g., see Li and Linetsky 2014 and various
references therein) and can be attributed to temporary supply and demand imbalances, changes in
market expectations, or even unanticipated macroeconomic developments (Hilliard and Reis 1998,
Clewlow and Strickland 2000). Due to inelastic supply, even a relatively small change in demand
can result in extreme sudden price movements.
Finally, we note that seasonal patterns are not common in the crude oil prices (although most

petroleum products experience seasonality effects). For commodities prone to such fluctuations, the
shape of the forward curve is determined by the expectations regarding the seasonal demand and
supply dynamics; the crude oil market is a world market where seasonality is not observed in the
term structure of futures prices (Borovkova and Geman 2006). For example, heating oil (gasoline)
exhibits a relative upward pressure during the winter (summer) months and the storage capacity
may not always be able to absorb the seasonal demand shocks, especially during the period of
peak demand; hence, higher prices are anticipated in winter (summer), and lower prices during the
inventory-accumulation period in summer (winter). As the demand for crude oil stems from the
demand for its refined products, their distinct seasonality tends to balance out.

3. The models

Given our discussion in the previous section, in the ensuing analysis we consider the Bates (1996)
model with price jumps and stochastic volatility as well as the nested Heston (1993) model without
jumps, as candidates for describing the crude oil price dynamics.
Let (Ω,F ,F, P̂ ) be a complete stochastic basis, i.e., the filtration F := {Ft}t∈R+ satisfies the

usual conditions. We interpret P̂ as a risk neutral measure. In the Heston model, the stochastic
variance V follows a Cox et al. (1985) (CIR) / Feller (1951) square root diffusion solving the SDE

dVt = α(β − Vt)dt+ γ
√
VtdWt, V0 = υ0, (1)

whereW is a standard Brownian motion and the parameters α, β, γ are assumed to satisfy the Feller
condition, d := 2αβ/γ2 − 1 ≥ 0, to ensure that zero is an inaccessible boundary. The advantage
of the CIR process in our contribution is in its analytical tractability; its transition probability
density and the characteristic function of its time-integral conditional on the state of the process
at time t are known in closed form. More specifically, the CIR transition density (see Cox et al.
1985) is

c(t, υ|υ0) =
2α

γ2 (1− e−αt)
e
− 2α(υ0e−αt+υ)

γ2(1−e−αt)

(
υ

υ0e−αt

) d

2

Id

(
4α

√
υ0υe−αt

γ2 (1− e−αt)

)
, (2)

where Id(·) is the modified Bessel function of the first kind of order d. From Broadie and Kaya
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(2006), ζ(t, u|υ0, υ) := Ê(exp(iu
∫ t
0 Vsds)|V0 = υ0, Vt = υ), that is, the characteristic function of

the integrated process conditional on the state of the process at time t is

ζ(t, u|υ0, υ) =
ψ (u)

√
e−(ψ(u)−α)t

(
1− e−αt

)
α
(
1− e−ψ(u)t

)
× exp

{
υ0 + υ

γ2

(
α
(
1 + e−αt

)
1− e−αt

−
ψ (u)

(
1 + e−ψ(u)t

)
1− e−ψ(u)t

)}

×
Id

(
4ψ(u)

√
υ0υe−ψ(u)t

γ2(1−e−ψ(u)t)

)
Id

(
4α

√
υ0υe−αt

γ2(1−e−αt)

) , (3)

where ψ (u) :=
√
α2 − 2iuγ2. Result (3) will be revisited in Section 5.1 where its importance for

the purposes of our pricing application will become obvious.
In the Heston model the log-asset price SDE is

dXt =

(
µ− 1

2
Vt

)
dt+

√
Vt

(
ρdWt +

√
1− ρ2dBt

)
, X0 = χ0, (4)

where µ ∈ R is constant, the standard Brownian motion B is independent of W , and ρ is the
instantaneous correlation between the processes X and V . The Bates model is an extension of the
Heston model to include jumps in the (log) asset price dynamics

dXt =

(
µ− λκ(−i)− 1

2
Vt

)
dt+

√
Vt

(
ρdWt +

√
1− ρ2dBt

)
+ dLt, (5)

where L is an independent time-homogeneous compound Poisson process with intensity λ and
normal jump sizes J with mean µJ and standard deviation σJ , and κ(u) := exp

(
iuµJ − σ2Ju

2/2
)
−1.

4. Data specification and calibration to option prices

We estimate models (1), (4) and (1), (5) on a panel data set of market quotes of NYMEX WTI
futures American options trading on the NYMEX division of the CME Group. Both futures and
options are quoted in US dollars and cents per barrel (bbl). They are traded for all deliveries
(consecutive months) within the current year and the next five years. The June and December
contracts are listed beyond the sixth year whereas additional months are added on an annual basis
after the December contract expires, so that an additional June and a December contract are added
nine years forward and the consecutive months in the sixth calendar year are filled in. Each futures
contract is traded until the close of business on the third business day prior to the 25th calendar
day of the month preceding the delivery month. If the 25th calendar day of the month is a non-
business day, the trading ceases on the third business day prior to the business day preceding the
25th calendar day of the month preceding the delivery month. For each option contract, the trading
ceases on the third business day prior to the business day preceding the termination of the trading
in the underlying futures contract. One hundred different strike prices are traded in increments
of $0.50 per bbl above and below the at-the-money (ATM) strike price, additional twenty strike
prices in increments of $2.50 per bbl above and below the highest and lowest 50th increment, and
ten strike prices in increments of $5.00 per bbl above and below the highest and lowest 250th
increment.
The raw data set consists of settlement mid-point call and put option prices, open interest and

daily volume for all available American vanilla options on WTI futures on February 3, 2015. The
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raw options data set is obtained from the CME. We collect data for the first six nearby maturities,
ranging from 42 days to maturity (April 2015) to 195 days to maturity (September 2015) with an
average open interest and trading volume of 229,185 and 20,458, respectively. Beyond six months to
expiry liquidity is concentrated on the contracts expiring in March, June, September and December,
whereas beyond one year liquidity is concentrated on the contracts with December expiry. Thus,
among the remaining contracts, we choose the first two contracts with expiration in December 2015
(287 days to maturity) and March 2016 (379 days to maturity) with an open interest of 16,556
and 67,822 and a trading volume of 402 and 300 contracts, respectively. Options on the remaining
more distant maturity futures contracts are not considered, as the exposure to errors arising from
the conversion of American to European option prices1 and the assumption of constant interest
rates becomes more serious for longer-term options.
When calibrating the models, we apply some standard filter rules on the option data. First, for

each option maturity, we consider moneyness1 ranging from 0.65 to 1.35, as very deep out-of-the-
money (OTM) and in-the-money (ITM) options are plagued by illiquidity. Second, to minimize the
effect of any errors due to the early-exercise approximation, we use only OTM and ATM put and
call options (Trolle and Schwartz 2009); in addition, OTM options tend to be more liquid than
ITM options as the latter are more expensive. Third, we consider only options that have an open
interest in excess of 100 contracts. Finally, options with prices of less than 0.10 dollars are removed.
After sorting the data, we are left with 322 options on the given trading day.
We resort to standard practice for extracting risk neutral parameter estimates of the underlying

price models from observed option prices. More specifically, let CMi,T and Cθi,T be, respectively,
the market option price and the theoretical option price under the underlying price model with
parameter vector θ for an option with i-th strike price maturing at T . Theoretical option prices
are computed with high accuracy using the Fourier-cosine series expansion of Fang and Oosterlee
(2008). For the Bates model (1), (5), θ := {V0, α, β, γ, ρ, λ, µJ , σJ}; for the Heston model (1),
(4) the parameter vector reduces to θ := {V0, α, β, γ, ρ}. Note that µ = 0 due to the underlying
futures contracts. We estimate θ by minimizing the Euclidean distance between the observed and
theoretical option prices for each maturity T

θ∗T := argmin
θ

m∑
i=1

∣∣∣CMi,T − Cθi,T

∣∣∣2 , (6)

where m is the number of strike prices. We obtain a proxy for the risk free interest rate used in our
computations by fitting a Nelson and Siegel (1987) curve to the US treasury yield curve consisting
of the 1-month, 3-month, 6-month, 12-month and 24-month rates.

4.1. Results of the calibration

Calibration results are reported in Table 2. Several remarks are in order. The long-run mean
volatility

√
β of the crude oil futures prices under the Heston model (Panel A) decreases from 90%

to 43% with increasing maturity; the observed decaying term structure of volatility is consistent
with the Samuelson (1965) effect which is common in commodities markets (short-end forward
commodities curves are more sensitive to information flow). A similar pattern is observed for the
volatility of variance γ. Our estimates for parameter α imply that the expected time for the model
variances to return half-way toward level β increases from 4 to 26 weeks (half-life is given by ln 21/α).
The correlation coefficient ρ is found negative, contrary to the inverse leverage effect (high prices

1For computational reasons, estimation is feasible only with European options necessitating a conversion of American to

European option prices. To this end, we employ the procedure described in Trolle and Schwartz (2009, Appendix B). This
requires an approximation of the early-exercise premium with the approximation error becoming more profound with increasing
option maturity due to increasing early-exercise premium (as a percentage of the total option price).
1Moneyness is defined as the ratio of the strike price to the price of the underlying.
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Table 2. Parameter estimates.

Maturities Apr-15 May-15 Jun-15 Jul-15 Aug-15 Sep-15 Dec-15 Mar-16

S0 53.86 54.95 56.11 57.27 58.35 59.26 61.28 62.83
r 0.00023 0.00047 0.00072 0.00104 0.00134 0.00170 0.00287 0.00423

Panel A. Heston model
V0 0.07600 0.05429 0.01033 0.07775 0.06321 0.07515 0.03042 0.04233
α 9.50206 6.31880 5.96210 3.83075 3.43548 2.68401 1.91593 1.41502
β 0.81483 0.65139 0.51239 0.40253 0.33722 0.29452 0.27397 0.18111
γ 3.93384 2.86685 2.23042 1.75488 1.52145 1.25605 1.02393 0.71546
ρ -0.24516 -0.30362 -0.38460 -0.40354 -0.43811 -0.48035 -0.55634 -0.45537

Panel B. Bates model
λ 2.06292 2.18428 1.21831 1.11805 0.76559 0.96278 0.80730 0.89852
µJ 0.10440 0.16345 0.17049 0.15311 0.16134 0.14633 0.10748 0.07516
σJ 0.11889 0.06909 0.08828 0.10017 0.10645 0.09321 0.09406 0.12787
V0 0.02465 0.04522 0.01836 0.05299 0.03961 0.03738 0.01002 0.03397
α 15.72908 7.63344 6.12566 4.71097 4.61157 2.65080 2.44543 1.51012
β 0.55265 0.43761 0.40321 0.31188 0.25908 0.27714 0.22588 0.14665
γ 4.16949 2.58458 2.22234 1.71410 1.54578 1.21052 0.96353 0.66544
ρ -0.46634 -0.70311 -0.66433 -0.72267 -0.73495 -0.81544 -0.80597 -0.79549

The table presents the model calibration outcome as on February 3, 2015. Annual parame-
ter estimates for the Heston (Panel A) and Bates (Panel B) models are extracted from op-
tion prices with different strikes for each contract maturity (see Eq. 6): first six nearby maturi-
ties, ranging from 42 days to maturity (April 2015) to 195 days to maturity (September 2015)
as well as December 2015 (287 days to maturity) and March 2016 (379 days to maturity).

associated with high volatility, e.g., see Pindyck 2004). However, our observation is consistent with
recent evidence in Trolle and Schwartz (2009) and Larsson and Nossman (2011); Geman and Shih
(2009) also find that the inverse leverage effect is not present in crude oil prices in the post-2000
era.
Incorporating price jumps in the dynamical structure of the log-return process (Bates model)

naturally has a reduction effect on the long-run mean variance, the half-life, the volatility of variance
and the correlation level as the inclusion of jumps reduces the need for the variance process to create
large sudden movements (Panel B). For example, the long-run mean volatility

√
β range reduces

to 74%–38%. The estimated variance mean-reversion speeds translate to half-lives of approx. 2
to 24 weeks. The mean jump size µJ lies within 7.5% to 17% with an average of 13.5% across
maturities, whereas the standard deviation of the jump size σJ lies within 6.9% to 12.8%. The
average, across maturities, frequency of jumps λ is 1.25; the jump arrival rate is higher at nearby
maturities and decays at more distant maturities, in consistency with the Samuelson (1965) effect.
Finally, similarly to the Heston model, the correlation coefficient estimates are negative.
In addition, we test the performance of the two crude oil models in option pricing. To this end,

we compute for each maturity T the following statistics which measure the tracking error from the
market quotes

MAET : =
1

m

m∑
i=1

∣∣∣CMi,T − C
θ∗T
i,T

∣∣∣ , MAPET :=
1

m

m∑
i=1

∣∣∣∣∣1− C
θ∗T
i,T

CMi,T

∣∣∣∣∣ , (7)

RMSET : =

√√√√ 1

m

m∑
i=1

∣∣∣CMi,T − C
θ∗T
i,T

∣∣∣2, RMSPET :=

√√√√ 1

m

m∑
i=1

∣∣∣∣∣1− C
θ∗T
i,T

CMi,T

∣∣∣∣∣
2

, (8)

where θ∗T is given by (6). Results are presented in Table 3.
A collective view of our calibration results suggests that both models generate low pricing errors.

The aggregate, i.e., obtained across all maturities, MAPE (RMSPE) of 1.76% (2.23%) and 1.02%
(1.69%), respectively, for the Heston and Bates models (Panels A–B) support their ability to capture
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Table 3. Option pricing errors.

Apr-15 May-15 Jun-15 Jul-15 Aug-15 Sep-15 Dec-15 Mar-16 Aggregate

Panel A. Heston model
MAE 0.0094 0.0248 0.0554 0.0352 0.0276 0.0468 0.1143 0.0303 0.0464

MAPE 0.9380 1.3404 2.2882 1.3236 1.0873 1.6532 3.0435 0.7643 1.7550
RMSE 0.0125 0.0315 0.0661 0.0385 0.0334 0.0556 0.1334 0.0363 0.0684

RMSPE 1.2402 1.9105 2.5715 1.4737 1.2684 1.9507 3.6780 0.8903 2.2290

Panel B. Bates model
MAE 0.0128 0.0163 0.0089 0.0075 0.0082 0.0156 0.1133 0.0182 0.0291

MAPE 0.8782 0.8669 0.4459 0.3220 0.2261 0.5283 2.9883 0.4470 1.0247
RMSE 0.0175 0.0206 0.0113 0.0089 0.0142 0.0200 0.1344 0.0219 0.0568

RMSPE 1.0899 1.1877 0.5607 0.4001 0.3120 0.6081 3.6795 0.5365 1.6920

Panel C. Pairwise t-statistics for model comparisons
MAE 2.9051 -2.9141 -11.0159 -7.5163 -3.6091 -6.4501 -0.3031 -3.775 -9.8488

[0.005] [0.005] [0.000] [0.000] [0.005] [0.000] [0.763] [0.003] [0.000]
[0.002] [0.997] [1.000] [1.000] [0.998] [1.000] [0.619] [0.998] [1.000]

MAPE -0.7862 -3.4698 -13.4752 -8.11 -3.8869 -6.4041 -1.6451 -4.8082 -11.92
[0.434] [0.001] [0.000] [0.000] [0.003] [0.000] [0.106] [0.001] [0.000]
[0.783] [0.999] [1.000] [1.000] [0.998] [1.000] [0.947] [1.000] [1.000]

RMSE 3.1533 -3.1205 -7.9804 -5.1265 -2.6974 -5.2083 2.0908 -2.7093 -1.4749
[0.002] [0.003] [0.000] [0.000] [0.022] [0.000] [0.041] [0.020] [0.141]
[0.001] [0.998] [1.000] [1.000] [0.989] [1.000] [0.021] [0.990] [0.929]

RMSPE -1.8536 -2.7897 -7.7334 -3.8895 -2.8122 -3.9983 1.4142 -3.5058 -0.0774
[0.068] [0.007] [0.000] [0.001] [0.018] [0.000] [0.163] [0.005] [0.938]
[0.966] [0.996] [1.000] [1.000] [0.991] [1.000] [0.081] [0.998] [0.531]

Panels A and B of the table report, respectively, for the Heston and Bates models the average per-
formance measures for each maturity as well as the aggregate average: mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean square error (RMSE) and root mean square
percentage error (RMSPE) (see Eqs. 7–8). The theoretical option prices used in the computation
of the measures are based on the parameter estimates in Table 2. Panel C presents pairwise t-
statistics for each performance measure G (first entry of each cell), the p-values (in [·]) for the
null H0: ḠBates = ḠHeston (second entry) and for the null H0: ḠBates < ḠHeston (third entry).

stylized properties of crude oil prices. In addition, the Bates model yields lower pricing error across
maturities implying the importance of modelling price jumps in order to flexibly describe abrupt
changes in the WTI prices. Based on the aggregate reports, for example, the improvement in the
option price fitting performance achieved by the Bates model is 37%, 41%, 17% and 24% in MAE,
MAPE, RMSE and RMSPE, respectively.
We conclude this analysis by referring to an additional robustness check in Panel C of Table 3,

where we report pairwise comparisons of the two models to test whether the Bates model yields
statistically significant improvements in the performance measures. Largely, our results suggest
that ignoring the price jumps generates statistically higher errors. In particular, the hypothesis
that the average performance measures across maturities are equal is rejected at conventional
significance levels, with the exception of the Dec-15 MAE and aggregate RMSE and RMSPE. Yet,
the hypothesis that the Bates model yields lower errors cannot be rejected at the 1% level in all
cases.

5. Valuation of Asian options under stochastic volatility: a recursive-integral
approach

5.1. Backward price recursion

Consider an Asian option with underlying S observed over the period [0, T ] at the equidistant
times t0 = 0, t1 = ∆, t2 = 2∆, . . . , tN = N∆ = T . Let {Zj}Nk=1 be a collection of random variables
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Table 4. Coefficients {lk}Nk=0 for various types of Asian options.

Option type l0 l1, . . . , lN−1 lN

Floating strike, put 1
N+1

1
N+1

1
N+1

−K

Floating strike, call − 1
N+1

− 1
N+1

K − 1
N+1

Fixed strike, put K
S0

− 1
N+1

− 1
N+1

− 1
N+1

Fixed strike, call 1
N+1

− K
S0

1
N+1

1
N+1

representing the log-returns on S so that

Sk = S0 exp

(∑k

j=1
Zj

)
, k = 1, . . . , N, S0 > 0.

Under the unified framework of Večeř (2002), the payoff of an Asian option is generally given by(∑N

k=0
lkSk

)+

,

where (·)+ denotes the positive part function and the coefficients {lk}Nk=0 are deterministic and
take different values for different contract specifications (see Table 4). For example, we focus here
on the case of a floating strike (also called average strike) put option with

lk :=
1

N + 1
, 0 ≤ k < N, and lN :=

1

N + 1
−K, K > 0, (9)

from which we retrieve the payoff of the option(∑N

k=0
lkSk

)+

=

(
1

N + 1

∑N

k=0
Sk −KSN

)+

. (10)

The floating strike option is an important contract with a helpful structure in volatile or hardly
predictable markets which justifies its high demand. Furthermore, beyond energy markets, as men-
tioned in the Introduction, fixed exchange rate linked quanto average strike options are, amongst
others, particularly popular and actively traded over-the-counter as they can hedge both the foreign
stock price and exchange risks for domestic investors (see Chang and Tsao 2011).
Consider the process

Yk = ln(eYk−1 + lk−1)− Zk, 1 < k ≤ N, (11)

Y1 = ln l0 − Z1, (12)

where lk > 0 for k = 0, . . . , N − 1. By evaluating exp(Yk) recursively using (11)–(12) it is straight-
forward to show that (10) can be written as

(SNe
YN + SN lN )

+ = SN (e
YN + lN )

+, lN ∈ R,

where the equality follows by homogeneity of the payoff function of degree 1. (This factorization
approach has been contributed by Stewart Hodges and first appeared in Carverhill and Clewlow
1990.) The price of the option is given under the risk neutral measure P̂ by

Ê(SNe
−rtN (eYN + lN )

+) = Ê(SNe
−rtN )E((eYN + lN )

+),
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where the equality follows from the numéraire change formula (Geman et al. 1995) with the sec-
ond expectation being taken under a new measure P with the underlying asset representing the
numéraire. This change of measure reduces effectively the pricing problem to a two-dimensional
one. More specifically, the process Y is not Markov as its evolution is determined also by the level
of volatility. To regain a Markov process one must consider the two-dimensional process (Y, V ),
then the expected value

E((eYN + lN )
+) (13)

can be computed recursively under the measure P .

Theorem 5.1 Let c be the variance transition density given by (2) and f the log-return density
conditional on the variance levels xυ and yυ at the endpoints of the time interval [tk−1, tk]. Consider
constants {lk}Nk=0 given by (9). Define

pN (y) = (ey + lN )
+, (14)

hk(y) = ln(ey + lk), 0 < k < N,

qk−1(x, xυ) =

∫
R+

∫
R
pk(x− z, yυ)g(∆, z, yυ|xυ)dzdyυ, 0 < k ≤ N, (15)

=

∫
R+

q̃k−1(x, xυ, yυ)c(∆, yυ|xυ)dyυ, (16)

q̃k−1(x, xυ, yυ) =

∫
R
pk(x− z, yυ)f(∆, z|xυ, yυ)dz, 0 < k ≤ N, (17)

pk(y, yυ) = qk(hk(y), yυ), 0 < k < N, (18)

where qk−1 is the option value function at time tk−1 and

g(∆, z, yυ|xυ) = c(∆, yυ|xυ)f(∆, z|xυ, yυ)

is the joint density of the log-return and variance at tk given the information at tk−1 from which
(16)–(17) follow. (17) is the convolution of the function pk with the log-return density f .
Then, the expected value (13) is given by

E((eYN + lN )
+) = q0(ln l0, υ0).

Proof. We prove by induction on k that E((eYN + lN )
+|Fk) = pk(Yk, Vk) for k = 0, . . . , N . Trivially

the result holds for k = N . Suppose E((eYN + lN )
+|Fk+1) = pk+1(Yk+1, Vk+1) holds for arbitrary

k < N − 1. By iterated expectations,

E((eYN + lN )
+|Fk) = E[E((eYN + lN )

+|Fk+1)|Fk] = E(pk+1(Yk+1, Vk+1)|Fk)

= E(pk+1(ln(e
Yk + lk)− Zk+1, Vk+1)|Fk),

where the last equality follows from (11). Then

E(pk+1(ln(e
Yk + lk)− Zk+1, Vk+1)|Fk)

=

∫
R+

∫
R
pk+1(ln(e

Yk + lk)− z, yυ)g(∆, z, yυ|xυ)dzdyυ

= qk(ln(e
Yk + lk), Vk) = pk (Yk, Vk) ,
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where the last two equalities follow from (15) and (18). Therefore, by induction,

E((eYN + lN )
+) = E((eYN + lN )

+|F0) = q0(ln l0, V0).

Few comments are in order. First, the inner integral in (15) is isolated and defined separately in
(17) and (15) is re-expressed accordingly in (16) aiming to facilitate the numerical implementation
described in Section 5.2. Second, the conditional log-return density f in (17) is not known explicitly,
however through Proposition 5.1 we gain access to the associated characteristic function which
serves efficiently when solving the problem numerically by Fourier transform as we describe in
Section 5.2. Finally, it is worth noting that the valuation procedure developed in Theorem 5.1
reduces to the one-dimensional case considered in Černý and Kyriakou (2011) under Lévy log-
increments of the underlying asset price. Given the price of the put option, the call option can also
be priced via standard put-call parity.

Proposition 5.1 If processes V and X evolve according to (1) and (4), the characteris-
tic function under the measure P of the log-return Zk conditional on the states xυ and yυ
of the variance process at the endpoints of the time interval [tk−1, tk], i.e., ϕ(∆, u|xυ, yυ) =
E (exp(iuZk)|Vk−1 = xυ, Vk = yυ), is given by

ϕ(∆, u|xυ, yυ) = Ê
(
eZk
)−1

exp

{
i (u− i)

((
µ− ραβ

γ

)
∆+

ρ

γ
(yυ − xυ)

)}

×ζ

(
∆, (u− i)

(
ρα

γ
− 1

2
+
i (u− i)

(
1− ρ2

)
2

)∣∣∣∣∣xυ, yυ
)
, (19)

where ζ is given in (3).
If, instead, X follows (5), then

ϕ(∆, u|xυ, yυ) = Ê
(
eZk
)−1

exp

{
i (u− i)

((
µ− λκ(−i)− ραβ

γ

)
∆+

ρ

γ
(yυ − xυ)

)
+ λκ(u− i)∆

}

×ζ

(
∆, (u− i)

(
ρα

γ
− 1

2
+
i (u− i)

(
1− ρ2

)
2

)∣∣∣∣∣xυ, yυ
)
. (20)

Proof. From the numéraire change formula

E
(
eiuZk |Vk−1 = xυ, Vk = yυ

)
= Ê

(
eZk
)−1

Ê
(
ei(u−i)Zk |Vk−1 = xυ, Vk = yυ

)
.

From the tower property of expectations,

Ê
(
ei(u−i)Zk |Vk−1 = xυ, Vk = yυ

)
= Ê

[
Ê

(
ei(u−i)Zk

∣∣∣ ∫ tk

tk−1

Vsds

)∣∣∣∣Vk−1 = xυ, Vk = yυ

]
= exp

{
i (u− i)

((
µ− ραβ

γ

)
∆+

ρ

γ
(yυ − xυ)

)}
×Ê

[
exp

{
i (u− i)

(
ρα

γ
− 1

2
+
i(u− i)(1− ρ2)

2

)∫ tk

tk−1

Vsds

}∣∣∣∣Vk−1 = xυ, Vk = yυ

]
, (21)

where the second equality follows from (4) and (1) and normality of Z conditional on the integral
of the variance process. Then, (19) follows from (21) and (3). Extending to (20) is straightforward
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by independence of the jump component in (5).

It is important to stress that our pricing setup can be adapted to general ASV models, including
time changed Lévy processes (see Carr et al. 2003 and Carr and Wu 2004) using, for example, the
integral of a CIR variance process, and the Barndorff–Nielsen–Shephard model of Barndorff-Nielsen
and Shephard (2001) and Barndorff-Nielsen et al. (2002) with a Lévy-driven Ornstein–Uhlenbeck
variance process. More specifically, from Bartlett (1938, p. 62–63), the required characteristic func-
tion of the log-return conditional on the variance state at time t (see Proposition 5.1) is generally
given by

ϕ(t, u|υ0, υ) =
∫
e−iυωξ(t, ω, u|υ0)dω∫
e−iυωξ(t, ω, 0|υ0)dω

,

where ξ(t, ω, u|υ0) := E (exp(iωVt + iuZt)|V0 = υ0) admits explicit representations under various
ASV processes (e.g., see Fusai and Kyriakou 2016, Hubalek et al. 2014). In this paper, we consider
the Heston log-asset price process, which forms a special case in this class being given by a CIR
time changed arithmetic Brownian motion (e.g., see Kallsen and Pauwels 2011), as well as the
Bates model with independent random jumps.
Finally, another advantage of our method is that the option price sensitivities (also known as the

Greeks) can be obtained assuming that we can differentiate equations (16)–(17) under the integral
sign (a usual assumption in option pricing via Fourier transform) with respect to parameters of
interest, e.g., the initial variance υ0, etc. (see Ballotta et al. 2016 for the case of general Lévy
log-increments of the underlying asset price).

5.2. Implementation of backward recursion by combined Fourier
transform-quadrature method

Equations (14)–(18) define the problem we want to solve numerically. We compute by backward
recursion at each monitoring date the functions q̃, q and p starting from maturity to obtain ulti-
mately the option prices on a grid of variance values at time t0. To ensure fast computation of the
integrals (16)–(17), we employ a numerical method that combines standard trapezoidal quadrature
rule and discrete Fourier transform. Our numerical algorithm proceeds as follows.

Step 0 Preliminary computations: grid construction, density function and characteristic function
valuations.

a) Select equally spaced grids for the variance and the value of the underlying asset on the
log-scale, respectively, lnxυ = {lnxυ,0+mυδυ}nυ−1

mυ=0 and x = {x0+mδ}n−1
m=0 on which

qk−1 in (16) is evaluated (see Step 2 ). Based on the rules set out in Fang and Oosterlee
(2011), choose lnxυ,0 = lnE(V∆|V0 = υ0)−ϱ(1+d)−1 = ln

(
υ0e

−α∆ + β(1− e−α∆)
)
−

ϱ(1+d)−1, where d = 2αβγ−2−1 and ϱ is a user-defined proportionality constant, and
x0 = c1 − ϱ

√
c2 where cj is the j-th cumulant of the log-asset price distribution (this

can be computed explicitly by straightforward differentiation of its log-characteristic
function using any symbolic computation package such as Mathematica). For given
grid sizes nυ and n and assuming a symmetric grid, compute, respectively, grid spacings
δυ = (lnxυ,nυ−1 − lnxυ,0)n

−1
υ = 2ϱ(1+ d)−1n−1

υ and δ = (xn−1 − x0)n
−1 = 2ϱ

√
c2n

−1.
b) Select grid yυ (for convenience, yυ = xυ) and evaluate the CIR variance transition

density given in (2). Let c = {c(∆,yυ,jυ |xυ,mυ
)}nυ−1,nυ−1
jυ=0,mυ=0 be the density function

values on the grid (yυ,xυ); store for use for all k in Step 2.

Remark 5.1 The Bessel function Id(z) (see Eq. 2) can be computed, for example,
in Matlab using the built-in function besseli(d,z) for real order d and complex ar-
gument z. To avoid computational problems due to extreme Bessel function values, it
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is advisable to compute first the scaled version exp (− |Re z|) Id(z) based on the robust
package of Amos (1985, 1986) available as besseli(d,z,1) in Matlab, and rescale
to retrieve Id(z). In addition, when the Feller condition is not satisfied, i.e., d < 0,
the process can reach zero when started from υ0 > 0, and zero is an instantaneously
reflecting boundary. Numerical experiments in Fang and Oosterlee (2011) show that
decreasing d affects the behaviour of the CIR density (does not tail off on both sides) on
the left (slow decay, constant tail or drastic increase in value), which can be avoided by
transforming to the log-variance domain, for which reason we construct the variance
grid on the log-scale in the above step.

c) Select grid y (for convenience, y = x) on which pk in (18) is evaluated (see Step 3 ).
d) Select uniform, symmetric grid u = {(mu − n/2)δu}n−1

mu=0 of size n and spacing δu for
use next and in Step 1. The range of values of the grid u is chosen so that the tail of
the absolute value of the characteristic function (19) or (20) is sufficiently captured at
the tails, i.e., |ϕ| ≤ 10−ϱ

′
where ϱ′ ∈ N is guided by the desired precision.

e) Let ϕ = {ϕ(∆,umu
|xυ,mυ

,yυ,jυ)}
n−1,nυ−1,nυ−1
mu=0,mυ=0,jυ=0 be the values of the characteristic

function ϕ on the grid (u,yυ,xυ); store for use for all k in Step 1.

Step 1 Consider q̃k−1 in (17). For jυ = 0, . . . , nυ−1 and mυ = 0, . . . , nυ−1, compute, conditional
on the variance levels xυ,mυ

and yυ,jυ at the endpoints of the time interval [tk−1, tk], the
values of q̃k−1 on the grid of log-asset values x by means of the inverse discrete Fourier
transform:

q̃k−1,·,jυ,mυ
=
δu
2π
ei
n

2
δu(xT−x0) ◦

n−1∑
mu=0

e−i
2π

n
mum

(
e−iu

Tx0 ◦ P k,·,jυ ◦ ϕ·,jυ,mυ

)
mu

, (22)

where ◦ denotes the Hadamard element-wise product and, for jυ = 0, . . . , nυ − 1,

P k,·,jυ = δei(u+
n

2
δu)y0 ◦

n−1∑
j=0

ei
2π

n
muj

(
e−i

n

2
δuy ◦ pk,·,jυT ◦w

)
j

(23)

are the values of the discrete Fourier transform of pk on the grid u for given variance level
yυ,jυ at time tk. w = [1/2, 1, 1, · · · , 1, 1, 1/2] is the vector of trapezoid weights. In (23), pk
on the grid (y,yυ) is given by (14) for k = N ; see Step 3 for k < N .

Remark 5.2 The sums in (22) and (23) can be computed using the fast Fourier transform
(FFT) which is readily available in Matlab as fft and ifft. As required for a FFT im-
plementation, check that the Nyquist relation δuδ = 2π/n holds; if not, adjust the original
grids accordingly.

Step 2 Consider qk−1 in (16). For mυ = 0, . . . , nυ − 1, compute for given variance level xυ,mυ
at

time tk−1 the values of qk−1 on the grid of log-asset values x:

qk−1,·,mυ
= q̃k−1,·,·,mυ

(
c·,mυ

◦wT
)
. (24)

Remark 5.3 As the Feller condition is satisfied in our application, there is no notice-
able impact on the accuracy of the trapezoid rule. Violation of the Feller condition would
necessitate the use of a larger grid, hence of a higher-order quadrature rule.

Step 3 Consider pk−1 in (18). The values of pk−1 on the grid (y,yυ) are given by pk−1(y,yυ) =
qk−1(hk−1(y),yυ): fit a cubic interpolating spline to the nodes (x, qk−1,·,mυ

), for mυ =
0, . . . , nυ − 1, with not-a-knot endpoint conditions to evaluate qk−1 at hk−1(y) ⊆ x; for
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Table 5. Asian option prices.

Back. recursion Opt. LB CVMC Std. err. 95% CI
×10−5

(a) Heston model
10.1464609 10.128 10.14651 11.413 [10.1463, 10.1467]
9.0447223 9.032 9.04481 7.254 [9.0447, 9.0449]
8.2269388 8.219 8.22694 4.407 [8.2269, 8.2270]
7.1199900 7.114 7.11999 3.283 [7.1199, 7.1201]
6.5601931 6.556 6.56019 2.513 [6.5601, 6.5602]
6.0491417 6.046 6.04914 2.115 [6.0491, 6.0492]
5.5730025 5.570 5.57300 1.635 [5.5730, 5.5730]
4.5498436 4.548 4.54983 1.089 [4.5498, 4.5498]

(b) Bates model
8.9372259 8.925 8.93726 6.213 [8.9371, 8.9373]
8.0169212 8.009 8.01688 3.997 [8.0168, 8.0169]
7.5854509 7.579 7.58549 3.418 [7.5854, 7.5855]
6.7104526 6.705 6.71046 2.624 [6.7104, 6.7105]
6.1970137 6.193 6.19700 2.134 [6.1970, 6.1970]
6.0241464 6.020 6.02410 2.108 [6.0241, 6.0241]
5.513648 5.511 5.51365 1.528 [5.5136, 5.5137]

4.4666072 4.465 4.46661 1.160 [4.4666, 4.4666]

The table presents the results from our backward recursive-integral ap-
proach (back. recursion), the optimized option price lower bounds of Fu-
sai and Kyriakou (2016) (opt. LB) and the Monte Carlo price estimates
obtained using opt. LB as control variate (CVMC) (std. err.: standard
error of CVMC price estimates, CI: confidence interval for 107 runs).
Model parameters: see Table 2 and µ = 0 (due to the underlying futures
contracts). Other parameters: K = 1 (see Eq. 10), T = 1, N = 12.

hk−1(y) * x use linear extrapolation in ex (for example, use interp1 available in Matlab).
Continue with Step 1 until k = 1.

Remark 5.4 The outcome of the numerical scheme when k = 1 comprises option values
on the grid of nυ initial variance values υ0 (see Eq. 24).

5.3. Application to the valuation of commodity options

5.3.1. Discrete average options. In order to test our backward recursive approach, we per-
form numerical experiments under the Heston and Bates model parameterizations obtained in
Section 4. We note that our parameter sets (see Table 2) correspond to various levels of volatility,
skewness coefficient and excess kurtosis of the log-returns. We compare our results with benchmark
prices generated by a control variate Monte Carlo (CVMC) strategy which uses as control variate
the optimized option price lower bound of Fusai and Kyriakou (2016). To this end, we employ stan-
dard CVMC setup with the CV coefficient estimated in a pilot run (e.g., see Glasserman 2004). In
general, stochastic volatility models are hard to simulate accurately and various approaches have
been proposed (e.g., see discussion in Tse and Wan 2013). We choose a widely used and efficient
one in the literature, that is, the quadratic-exponential method of Andersen (2008) to simulate the
square root variance process with central discretization of the integrated variance.
We produce numerical results for a floating strike Asian option with monthly monitoring fre-

quency1 (N = 12). In Figure 4 we present error patterns of computed option prices in the Heston
and Bates models with increasing number of integration points n (see Section 5.2). We observe
that smoothly diminishing error patterns are preserved under both models and all parameter sets,
ensuring convergence to the desired number of decimal places with increasing n. To quantify the

1Higher monitoring frequencies have also been considered (for example in Figure 5 we use N = 16, 32, 64) with an equally good

performance. Additional results are omitted for brevity, however can be made available by the authors upon request.
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Figure 4. Error patterns of our backward recursive-integral pricing method in number of integration points n under
Heston and Bates models for each set of parameters in Table 2. pricen denotes the Asian option price calculated
using the numerical scheme in Section 5.2 with n integration points. ϵn = |pricen − pricen/2| are the absolute price

differences for n = 210, 211, 212, 213.

convergence, we fit regression lines. We define the order of convergence as b where the absolute
error is ϵn = an−b; thus, the log-absolute error ln ϵn is linear in lnn and has slope −b. In all cases
we find that the slope coefficient is b̂ = 2 and the coefficient of determination is R2 = 1.0 implying
order 2 convergence, in consistency with the error analyses of Andricopoulos et al. (2003), Lord
et al. (2008) and Černý and Kyriakou (2011) for the case of one-dimensional pricing problems un-
der Lévy log-returns and continuous value functions. We exploit the order 2 convergence to achieve
very high precision faster by extrapolation via a simple Richardson-type procedure; in Table 5 we
report results with accuracy of seven decimals achieved in 30s.2 Even with a very effective control
variate, the Monte Carlo method is not competitive as it takes 200s in the case of the Heston
model to achieve four decimal places of accuracy (at the 95% confidence level) using 107 simulation
runs; the simulation of the Bates model is substantially slower due to the additional simulation of
jumps. Contrary to our method, it can be hard for users to gauge the precision of Monte Carlo
simulation as its convergence may be damped by the existence of discretization bias (see discussion
above) requiring the use of a very large number of simulations to evaluate this precisely (such
task is beyond our scope), hence rendering Monte Carlo slow; also, it yields varying standard error
depending on the choice of model parameters.

5.3.2. Continuous average options. Next, we assess the performance of our pricing method-
ology in the case of the continuous average. Inherently, our construction refers to a discrete average.
Nevertheless, as shown in Figure 5, we achieve smoothly diminishing error patterns with increasing
number of monitoring dates N .1 We gauge the order of convergence by calculating the absolute

2All CPU time reports correspond to a Matlab R2015b implementation on a PC with an Intel Core i7-4870HQ CPU @ 2.5GHz
and 16GB of RAM.
1In Figure 5 we present results based on the first set of parameters in Table 2; additional results can be made available by the

authors upon request.
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Figure 5. Error patterns of our backward recursive-integral pricing method in number of monitoring dates N under
Heston and Bates models for parameter set 1 in Table 2. priceN denotes the price of the Asian option with N
monitoring dates calculated using the numerical scheme in Section 5.2. ϵN = |priceN − priceN/2| are the absolute

price differences for N = 24, 25, 26.

error ϵN = aN−b. By fitting regression lines, we find that the slope coefficient (log-log scale) is

b̂ = 1 and the coefficient of determination is R2 = 1.0 implying order 1 convergence of the discretely
monitored Asian option to the continuous solution, which is consistent with the error analyses of
Andricopoulos et al. (2003) and Lord et al. (2008) for high frequency observations and continu-
ous American features. Therefore, the discretely monitored Asian option prices are amenable to
Richardson extrapolation in the time dimension speeding up convergence to the price of the con-
tinuously monitored Asian option (N → ∞), or an Asian option with a large finite number of
monitoring dates (0 ≪ N < ∞) whose pricing by direct implementation of our method could be
computationally demanding. For the sake of exemplification, we use the parameter set 1 and com-
pute the price of the continuously Asian option under the Heston and Bates models: with accuracy
of four decimals we obtain, respectively, 10.3546 and 9.1162. (Higher precision can be achieved by
extrapolating discrete Asian option prices with N > 26—for illustration purposes in Figure 5 we
consider up to N = 26.) Existing simulation error in the Monte Carlo price estimates affects the
smooth convergence, hence prohibits the use of extrapolation techniques in this case, therefore our
approach remains competitive with increasing number of monitoring dates.

5.3.3. Heston versus Bates model. Comparing the option prices in the left panel of Figure
6 obtained under the Heston and Bates models, we see that the Heston prices are higher. The same
remark applies in the case of the fitted vanilla option prices from the calibration (6) in Section 4.
In our Asian option application, large discrepancies emerge for “shorter-term” calibrations, more
specifically, the percentage discrepancy ranges from 13.5% in the case of the Apr-15 calibration
(parameter set 1) to 1%−2% in the case of the Mar-16 calibration (parameter set 8). This behaviour
stems from the joint effect of the negative skewness, excess kurtosis and standard deviation of the
risk neutral distribution of the difference 1

N+1

∑N
k=0 Sk − SN (see right panel of Figure 6) which

results in higher prices under the Heston model. From the right panel of Figure 6 we observe
that the Heston model yields larger standard deviation, kurtosis and (absolute) skewness. We also
observe decreasing cumulant levels and discrepancies between the two models with increasing time
scale; the effect of jumps becomes more visible at shorter time scales where the need to allow for
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Figure 6. Floating strike Asian put option price patterns across parameter sets in Table 2 corresponding to model
calibrations based on WTI futures American vanilla options with maturities Apr-15, May-15, Jun-15, Jul-15, Aug-15,
Sep-15, Dec-15 and Mar-16 (left panel), alongside simulated cumulants of the difference 1

N+1

∑N
k=0 Sk − SN (right

panel).

them becomes more stringent, hence the Heston model on itself becomes less sufficient in explaining
the option prices leading to a substantial mispricing. This adds to our earlier observation of the
Heston model being unable to capture extreme price movements, such as during the Gulf War
(1990–91) and/or the events during the 2008 financial turmoil (see Figure 3), but also of the Bates
model’s superior performance in our vanilla option price fitting exercise in Section 4 as is evident
from Table 3. As seen in Figure 6, the pricing error reduces at longer time scales with the two
models performing similarly and the cumulants lying at the same levels.

6. Conclusions

We have developed a pricing framework for arithmetic Asian options in the presence of stochastic
volatility and price jumps. Our model setup accounts for volatility clustering, price discontinuities,
exhibits Samuelson’s maturity effect and negative correlation between volatility movements and
log-returns, which are ubiquitous features of crude oil prices. In this paper, we have used data from
the crude oil derivatives market as this is the most important and liquid one. Nevertheless, our
option pricing architecture is generally suited to other energy commodities, metals, agriculturals
and freight rates exhibiting similar stylized features. We have estimated the stochastic volatility
model with discontinuous price movements as well as its nested version without jumps to NYMEX
WTI futures vanilla options and found that both price jumps and stochastic volatility are necessary
to fit options. We also show that ignoring the jumps results in nontrivial pricing errors for Asian
options especially at short time horizons. Hence, model risk is less severe when both ingredients
are included.
In the current application we focus on the Heston and Bates models, nonetheless our methodology

is applicable to general ASV models with known joint laws of the underlying (log) asset price and
the stochastic variance via the associated characteristic functions. We further plan investigating
possible application in time changed Markov jump processes (see subordinate Ornstein–Uhlenbeck
(subOU) and time changed subOU models with stochastic volatility in Li and Linetsky 2014)
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with state-dependent jumps, i.e., with the jump direction and amplitude dependent on the current
states of the driving processes; this remains an open, interesting problem with various mathematical
and computational challenges. Currently, our pricing scheme converges smoothly in the number of
integration points, hence can reach high levels of precision by means of Richardson extrapolation.
In future work we aim to introduce parallelism in the pricing algorithm (e.g., see Corsaro et al.
2015, Fusai et al. 2010) to further speed up the evaluation procedure while preserving accuracy.
Our method is currently suited to both discrete and continuous average options, is free of any form
of bias or approximation error that can be hard to quantify, and is adaptable to the computation
of the price sensitivities.
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