112 research outputs found

    Roughness gradient induced spontaneous motion of droplets on hydrophobic surfaces: A lattice Boltzmann study

    Full text link
    The effect of a step wise change in the pillar density on the dynamics of droplets is investigated via three-dimensional lattice Boltzmann simulations. For the same pillar density gradient but different pillar arrangements, both motion over the gradient zone as well as complete arrest are observed. In the moving case, the droplet velocity scales approximately linearly with the texture gradient. A simple model is provided reproducing the observed linear behavior. The model also predicts a linear dependence of droplet velocity on surface tension. This prediction is clearly confirmed via our computer simulations for a wide range of surface tensions.Comment: 6 pages, 8 figure

    Control of Superselectivity by Crowding in Three-Dimensional Hosts

    Get PDF
    Motivated by the fine compositional control observed in membraneless droplet organelles in cells, we investigate how a sharp binding-unbinding transition can occur between multivalent client molecules and receptors embedded in a porous three-dimensional structure. In contrast to similar superselective binding previously observed at surfaces, we have identified that a key effect in a three-dimensional environment is that the presence of inert crowding agents can significantly enhance or even introduce superselectivity. In essence, molecular crowding initially suppresses binding via an entropic penalty, but the clients can then more easily form many bonds simultaneously. We demonstrate the robustness of the superselective behavior with respect to client valency, linker length, and binding interactions in Monte Carlo simulations of an archetypal lattice polymer model

    Learning dynamical information from static protein and sequencing data

    Get PDF
    Many complex processes, from protein folding to neuronal network dynamics, can be described as stochastic exploration of a high-dimensional energy landscape. While efficient algorithms for cluster detection in high-dimensional spaces have been developed over the last two decades, considerably less is known about the reliable inference of state transition dynamics in such settings. Here, we introduce a flexible and robust numerical framework to infer Markovian transition networks directly from time-independent data sampled from stationary equilibrium distributions. We demonstrate the practical potential of the inference scheme by reconstructing the network dynamics for several protein folding transitions, gene-regulatory network motifs and HIV evolution pathways. The predicted network topologies and relative transition time scales agree well with direct estimates from time-dependent molecular dynamics data, stochastic simulations and phylogenetic trees, respectively. Owing to its generic structure, the framework introduced here will be applicable to high-throughput RNA and protein sequencing datasets and future cryo-electronmicroscopy data

    Multicomponent flow on curved surfaces : A vielbein lattice Boltzmann approach

    Get PDF
    We develop and implement a novel finite difference lattice Boltzmann scheme to study multicomponent flows on curved surfaces, coupling the continuity and Navier-Stokes equations with the Cahn-Hilliard equation to track the evolution of the binary fluid interfaces. The standard lattice Boltzmann method relies on regular Cartesian grids, which makes it generally unsuitable to study flow problems on curved surfaces. To alleviate this limitation, we use a vielbein formalism to write down the Boltzmann equation on an arbitrary geometry, and solve the evolution of the fluid distribution functions using a finite difference method. Focussing on the torus geometry as an example of a curved surface, we demonstrate drift motions of fluid droplets and stripes embedded on the surface of such geometries. Interestingly, they migrate in opposite directions: fluid droplets to the outer side while fluid stripes to the inner side of the torus. For the latter we demonstrate that the global minimum configuration is unique for small stripe widths, but it becomes bistable for large stripe widths. Our simulations are also in agreement with analytical predictions for the Laplace pressure of the fluid stripes, and their damped oscillatory motion as they approach equilibrium configurations, capturing the corresponding decay timescale and oscillation frequency. Finally, we simulate the coarsening dynamics of phase separating binary fluids in the hydrodynamics and diffusive regimes for tori of various shapes, and compare the results against those for a flat two-dimensional surface. Our finite difference lattice Boltzmann scheme can be extended to other surfaces and coupled to other dynamical equations, opening up a vast range of applications involving complex flows on curved geometries

    Impalement transitions in droplets impacting microstructured superhydrophobic surfaces

    Full text link
    Liquid droplets impacting a superhydrophobic surface decorated with micro-scale posts often bounce off the surface. However, by decreasing the impact velocity droplets may land on the surface in a fakir state, and by increasing it posts may impale droplets that are then stuck on the surface. We use a two-phase lattice-Boltzmann model to simulate droplet impact on superhydrophobic surfaces, and show that it may result in a fakir state also for reasonable high impact velocities. This happens more easily if the surface is made more hydrophobic or the post height is increased, thereby making the impaled state energetically less favourable.Comment: 8 pages, 4 figures, to appear in Europhysics Letter

    Dynamics of the spontaneous breakdown of superhydrophobicity

    Get PDF
    Drops deposited on rough and hydrophobic surfaces can stay suspended with gas pockets underneath the liquid, then showing very low hydrodynamic resistance. When this superhydrophobic state breaks down, the subsequent wetting process can show different dynamical properties. A suitable choice of the geometry can make the wetting front propagate in a stepwise manner leading to {\it square-shaped} wetted area: the front propagation is slow and the patterned surface fills by rows through a {\it zipping} mechanism. The multiple time scale scenario of this wetting process is experimentally characterized and compared to numerical simulations.Comment: 7 pages, 5 figure

    Dynamics of gravity driven three-dimensional thin films on hydrophilic-hydrophobic patterned substrates

    Full text link
    We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates of longitudinal stripes and checkerboard arrangements. The thin film can be guided preferentially on hydrophilic longitudinal stripes, while fingers develop on adjacent hydrophobic stripes if their width is large enough. On checkerboard patterns, the film fingering occurs on hydrophobic domains, while lateral spreading is favoured on hydrophilic domains, providing a mechanism to tune the growth rate of the film. By means of kinematical arguments, we quantitatively predict the growth rate of the contact line on checkerboard arrangements, providing a first step towards potential techniques that control thin film growth in experimental setups.Comment: 30 pages, 12 figure

    Capillary filling with wall corrugations] Capillary filling in microchannels with wall corrugations: A comparative study of the Concus-Finn criterion by continuum, kinetic and atomistic approaches

    Full text link
    We study the impact of wall corrugations in microchannels on the process of capillary filling by means of three broadly used methods - Computational Fluid Dynamics (CFD), Lattice-Boltzmann Equations (LBE) and Molecular Dynamics (MD). The numerical results of these approaches are compared and tested against the Concus-Finn (CF) criterion, which predicts pinning of the contact line at rectangular ridges perpendicular to flow for contact angles theta > 45. While for theta = 30, theta = 40 (no flow) and theta = 60 (flow) all methods are found to produce data consistent with the CF criterion, at theta = 50 the numerical experiments provide different results. Whilst pinning of the liquid front is observed both in the LB and CFD simulations, MD simulations show that molecular fluctuations allow front propagation even above the critical value predicted by the deterministic CF criterion, thereby introducing a sensitivity to the obstacle heigth.Comment: 25 pages, 8 figures, Langmuir in pres

    Numerical study of wetting transitions on biomimetic surfaces using a lattice Boltzmann approach with large density ratio

    Get PDF
    The hydrophobicity of natural surfaces have drawn much attention of scientific communities in recent years. By mimicking natural surfaces, the manufactured biomimetic hydrophobic surfaces have been widely applied to green technologies such as self-cleaning surfaces. Although the theories for wetting and hydrophobicity have been developed, the mechanism of wetting transitions between heterogeneous wetting state and homogeneous wetting state is still not fully clarified. As understanding of wetting transitions is crucial for manufacturing a biomimetic superhydrophobic surface, more fundamental discussions in this area should be carried out. In the present work the wetting transitions are numerically studied using a phase field lattice Boltzmann approach with large density ratio, which should be helpful in understanding the mechanism of wetting transitions. The dynamic wetting transition processes between Cassie-Baxter state and Wenzel state are presented, and the energy barrier and the gravity effect on transition are discussed. It is found that the two wetting transition processes are irreversible for specific inherent contact angles and have different transition routes, the energy barrier exists on an ideally patterned surface and the gravity can be crucial to overcome the energy barrier and trigger the transition
    • …
    corecore