Liquid droplets impacting a superhydrophobic surface decorated with
micro-scale posts often bounce off the surface. However, by decreasing the
impact velocity droplets may land on the surface in a fakir state, and by
increasing it posts may impale droplets that are then stuck on the surface. We
use a two-phase lattice-Boltzmann model to simulate droplet impact on
superhydrophobic surfaces, and show that it may result in a fakir state also
for reasonable high impact velocities. This happens more easily if the surface
is made more hydrophobic or the post height is increased, thereby making the
impaled state energetically less favourable.Comment: 8 pages, 4 figures, to appear in Europhysics Letter