578 research outputs found

    Using Simulation to Improve Medical Students' Comfort with Selected Pediatric Procedures

    Get PDF
    BACKGROUND: Simulation in pediatrics is described often in more procedurally-heavy areas, such as in intensive care, emergency medicine, and neonatology. However, there is a paucity of literature related to simulation in general pediatrics. We sought to improve students’ comfort with and knowledge about selected procedures using simulation mannequins during their pediatric rotation. METHODS: During a workshop, third year medical students received a lecture on male circumcisions, lumbar punctures, the Ortolani and Barlow maneuvers, and ear examinations. Following the lecture, the students were given hands-on instruction and feedback on the techniques for performing ear and hip exams, lumbar punctures, and circumcisions. Students took a pre- and post-encounter assessment regarding their confidence level, procedural knowledge, and perceived usefulness of the training. Wilcoxon Signed Rank tests were used to determine changes in the students’ confidence levels and knowledge. Alpha was set at 0.05 for all comparisons. RESULTS: Sixty medical students (100%) participated in the study during the 2012/2013 academic year. Confidence and knowledge increased significantly on all procedures following the simulation experience (p < 0.001). Perception of usefulness of the training also increased significantly at post-test (p = 0.019). CONCLUSION: Medical students benefited from using simulation to demonstrate and practice common pediatric procedures, both in their confidence and knowledge. The use of simulation for general pediatric procedures should improve patient safety, as well as remove some of the anxiety of performing procedures in actual clinical scenarios

    Upwelling-Level Acidification and pH/pCO2 Variability Moderate Effects of Ocean Acidification on Brain Gene Expression in the Temperate Surfperch, Embiotoca jacksoni

    Get PDF
    Acidification-induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2. In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2 variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish, Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight-day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2 variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification

    USING THE RESERVOIR WAVE APPROACH TO STUDY THE HORIZON EFFECT

    Get PDF
    INTRODUCTION Differing theories and models have been explored in the field of arterial hemodynamics in an effort to better understand how the blood flows in the body. The existence of discrete reflection sites remains a source of disagreement. As a wave proceeds along an artery, any local change in impedance will result in partial reflection. Thus, because of the great complexity of the arterial system, it has been suggested that no distinct reflector sites should exist. On the other hand, there is recent experimental evidence using the reservoir-wave approach (RWA) that implies discrete positive and negative reflection sites. The pattern of wave propagation and reflection is plausible, as are the modifications produced by pharmacologic interventions [1]. The classical, frequency-domain, “impedance analysis” approach uses Fourier analysis to break down pressure and flow waveforms into summations of sinusoids, resulting in an impedance spectrum [2]. The RWA is a novel alternative, positing that measured pressures and flows are the instantaneous sums of “excess” (wave-related) and reservoir (volume-related) components [2]. The “Horizon Effect” (HE) [3] implies that a reflector site can never be reached no matter how far into the periphery one measures (Figure 1). As such, it supports the idea that there are no distinct reflector sites. Measuring peripheral pressure and flow and using the RWA, the purpose of this study was to evaluate the HE and the question of fixed reflector sites. METHODS Eight anesthetized pigs were catheterized and pressure and flow were measured simultaneously at 4 locations: the aortic root and the brachial, carotid and renal arteries. Pharmacologic interventions were used to manipulate propagation and reflection patterns. MatLab (The MathWorks Inc., Natick, MA) was used to calculate the reservoir pressure, the local wave speed and to carry out wave intensity analysis (WIA) to obtain the forwards and backwards components of pressure. RESULTS Analysis has been completed on 4 of the 8 animals studied. Each showed minimal backward wave activity at the aortic root and in the carotid artery. However, in the brachial and renal arteries, no backward waves could be detected. DISCUSSION AND CONCLUSIONS Backward waves were scarcely detected in the periphery using either the RWA or classical analysis. This may suggest that the pig model was inappropriate to study the HE. Porcine anatomy does not allow measurement at remote peripheral sites and reflection sites cannot be studied if no reflections are to be found. Further analysis of the data is needed before more definitive conclusions can be made

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Directional Phytoscreening: Contaminant Gradients in Trees for Plume Delineation

    Get PDF
    Tree Sampling Methods Have Been Used in Phytoscreening Applications to Delineate Contaminated Soil and Groundwater, Augmenting Traditional Investigative Methods that Are Time-Consuming, Resource-Intensive, Invasive, and Costly. in the Past Decade, Contaminant Concentrations in Tree Tissues Have Been Shown to Reflect the Extent and Intensity of Subsurface Contamination. This Paper Investigates a New Phytoscreening Tool: Directional Tree Coring, a Concept Originating from Field Data that Indicated Azimuthal Concentrations in Tree Trunks Reflected the Concentration Gradients in the Groundwater Around the Tree.To Experimentally Test This Hypothesis, Large Diameter Trees Were Subjected to Subsurface Contaminant Concentration Gradients in a Greenhouse Study. These Trees Were Then Analyzed for Azimuthal Concentration Gradients in Aboveground Tree Tissues, Revealing Contaminant Centroids Located on the Side of the Tree Nearest the Most Contaminated Groundwater. Tree Coring at Three Field Sites Revealed Sufficiently Steep Contaminant Gradients in Trees Reflected Nearby Groundwater Contaminant Gradients. in Practice, Trees Possessing Steep Contaminant Gradients Are Indicators of Steep Subsurface Contaminant Gradients, Providing Compass-Like Information About the Contaminant Gradient, Pointing Investigators toward Higher Concentration Regions of the Plume. © 2013 American Chemical Society

    The impact of ocean acidification on the functional morphology of foraminifera

    Get PDF
    This work was supported by the NERC UK Ocean Acidification Research Programme grant NE/H017445/1. WENA acknowledges NERC support (NE/G018502/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.Publisher PDFPeer reviewe

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types
    • …
    corecore