581 research outputs found

    Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease

    Get PDF
    Background: Although the short-term benefits of bilateral stimulation of the subthalamic nucleus in patients with advanced Parkinson's disease have been well documented, the long-term outcomes of the procedure are unknown. Methods: We conducted a five-year prospective study of the first 49 consecutive patients whom we treated with bilateral stimulation of the subthalamic nucleus. Patients were assessed at one, three, and five years with levodopa (on medication) and without levodopa (off medication), with use of the Unified Parkinson's Disease Rating Scale. Seven patients did not complete the study: three died, and four were lost to follow-up. Results: As compared with base line, the patients' scores at five years for motor function while off medication improved by 54 percent (P<0.001) and those for activities of daily living improved by 49 percent (P<0.001). Speech was the only motor function for which off-medication scores did not improve. The scores for motor function on medication did not improve one year after surgery, except for the dyskinesia scores. On-medication akinesia, speech, postural stability, and freezing of gait worsened between year 1 and year 5 (P<0.001 for all comparisons). At five years, the dose of dopaminergic treatment and the duration and severity of levodopa-induced dyskinesia were reduced, as compared with base line (P<0.001 for each comparison). The average scores for cognitive performance remained unchanged, but dementia developed in three patients after three years. Mean depression scores remained unchanged. Severe adverse events included a large intracerebral hemorrhage in one patient. One patient committed suicide. Conclusions: Patients with advanced Parkinson's disease who were treated with bilateral stimulation of the subthalamic nucleus had marked improvements over five years in motor function while off medication and in dyskinesia while on medication. There was no control group, but worsening of akinesia, speech, postural stability, freezing of gait, and cognitive function between the first and the fifth year is consistent with the natural history of Parkinson's disease

    Imapct of Biochar Application on Soil Properties and Herbacide Sorption

    Get PDF
    Biochars are the byproduct of anaerobic combustion (pyrolysis) of organic materials. Three biochars (switchgrass, cornstover, and Ponderosa pine woodchip) were created by burning the materials under anaerobic conditions for four hours at maximum temperatures of 850 o C (fast pyrolysis). Biochar samples were sorted by size (\u3c 2 mm, 2-4 mm, and \u3e 4 mm) and electrical conductivity (EC) and pH characteristics were determined in 1:5 (w/v) water and 0.01M CaCl2 . Each biochar type and size was added at 1 and 10% (w/w), to two South Dakota soils, Barnes (loamy) or Maddock (loamy fine sand). Atrazine sorption and changes in soil pH and EC were measured in slurry experiments (1:2 w/v). Biochar pH values were higher than soil pH values; however, the addition of biochar had minimal influence on soil pH. Biochar size affected soil EC values; the smallest sized chars at the 10% addition increased the soil EC. Atrazine sorption from solution increased from about 35% in soil only to almost 99% with each biochar treatment. Targeted biochar addition to soil may be warranted. If atrazine carryover is suspected, addition of biochar may reduce unwanted affects; however, higher sorption may require higher application rates to provide weed control similar to that of nonamended soil

    Maize, Switchgrass, and Ponderosa Pine Biochar Added to Soil Increased Herbicide Sorption and Decreased Herbicide Efficacy

    Get PDF
    Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major differences due to biochar application rate but minor differences due to biochar type or post-process handling technique. Biochar presence increased the speed of seed germination compared with herbicide alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal benefits without compromising other agronomic practices

    Programming of subthalamic nucleus deep brain stimulation for Parkinson’s disease with sweet spot-guided parameter suggestions

    Get PDF
    Deep Brain Stimulation (DBS) is an effective treatment for advanced Parkinson’s disease. However, identifying stimulation parameters, such as contact and current amplitudes, is time-consuming based on trial and error. Directional leads add more stimulation options and render this process more challenging with a higher workload for neurologists and more discomfort for patients. In this study, a sweet spot-guided algorithm was developed that automatically suggested stimulation parameters. These suggestions were retrospectively compared to clinical monopolar reviews. A cohort of 24 Parkinson’s disease patients underwent bilateral DBS implantation in the subthalamic nucleus at our center. First, the DBS’ leads were reconstructed with the open-source toolbox Lead-DBS. Second, a sweet spot for rigidity reduction was set as the desired stimulation target for programming. This sweet spot and estimations of the volume of tissue activated were used to suggest (i) the best lead level, (ii) the best contact, and (iii) the effect thresholds for full therapeutic effect for each contact. To assess these sweet spot-guided suggestions, the clinical monopolar reviews were considered as ground truth. In addition, the sweet spot-guided suggestions for best lead level and best contact were compared against reconstruction-guided suggestions, which considered the lead location with respect to the subthalamic nucleus. Finally, a graphical user interface was developed as an add-on to Lead-DBS and is publicly available. With the interface, suggestions for all contacts of a lead can be generated in a few seconds. The accuracy for suggesting the best out of four lead levels was 56%. These sweet spot-guided suggestions were not significantly better than reconstruction-guided suggestions (p = 0.3). The accuracy for suggesting the best out of eight contacts was 41%. These sweet spot-guided suggestions were significantly better than reconstruction-guided suggestions (p < 0.001). The sweet spot-guided suggestions of each contact’s effect threshold had a mean error of 1.2 mA. On an individual lead level, the suggestions can vary more with mean errors ranging from 0.3 to 4.8 mA. Further analysis is warranted to improve the sweet spot-guided suggestions and to account for more symptoms and stimulation-induced side effects

    Programming of subthalamic nucleus deep brain stimulation with hyperdirect pathway and corticospinal tract-guided parameter suggestions.

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway (HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal tract (CST) mediates capsular side effects. The study's objective was to suggest stimulation parameters based on the activation of the HDP and CST. This retrospective study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-specific whole-brain probabilistic tractography was performed to extract the HDP and CST. Stimulation parameters from monopolar reviews were used to estimate volumes of tissue activated and to determine the streamlines of the pathways inside these volumes. The activated streamlines were related to the clinical observations. Two models were computed, one for the HDP to estimate effect thresholds and one for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out cross-validation, the models were used to suggest stimulation parameters. The models indicated an activation of 50% of the HDP at effect threshold, and 4% of the CST at capsular side effect threshold. The suggestions for best and worst levels were significantly better than random suggestions. Finally, we compared the suggested stimulation thresholds with those from the monopolar reviews. The median suggestion errors for the effect threshold and side effect threshold were 1 and 1.5 mA, respectively. Our stimulation models of the HDP and CST suggested STN DBS settings. Prospective clinical studies are warranted to optimize tract-guided DBS programming. Together with other modalities, these may allow for assisted STN DBS programming

    Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations

    Get PDF
    This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s444. The resource allocation within the PSI share at CSCS and on the PSI compute cluster Merlin4 is also acknowledged. D. B. is grateful for a fellowship within the Sciex-NMS programme. A. K. was supported by Latvian Science Council Grant no. 187/2012.Uranium L3-edge X-ray absorption spectroscopy was used to study the atomic structure of uranium dioxide (UO2). The extended X-ray absorption fine structure (EXAFS) was interpreted within the ab initio multiple-scattering approach combined with classical molecular dynamics to account for thermal disorder effects. Nine force-field models were validated, and the role of multiple-scattering contributions was evaluated.Swiss National Supercomputing Centre project ID s444; Latvian Science Council grant no. 187/2012; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations

    Get PDF
    This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s444. The resource allocation within the PSI share at CSCS and on the PSI compute cluster Merlin4 is also acknowledged. D. B. is grateful for a fellowship within the Sciex-NMS programme. A. K. was supported by Latvian Science Council Grant no. 187/2012.Uranium L3-edge X-ray absorption spectroscopy was used to study the atomic structure of uranium dioxide (UO2). The extended X-ray absorption fine structure (EXAFS) was interpreted within the ab initio multiple-scattering approach combined with classical molecular dynamics to account for thermal disorder effects. Nine force-field models were validated, and the role of multiple-scattering contributions was evaluated.Swiss National Supercomputing Centre project ID s444; Latvian Science Council grant no. 187/2012; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
    • …
    corecore