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Abstract

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treat-

ment for advanced Parkinson's disease. Stimulation of the hyperdirect pathway

(HDP) may mediate the beneficial effects, whereas stimulation of the corticospinal

tract (CST) mediates capsular side effects. The study's objective was to suggest stim-

ulation parameters based on the activation of the HDP and CST. This retrospective

study included 20 Parkinson's disease patients with bilateral STN DBS. Patient-

specific whole-brain probabilistic tractography was performed to extract the HDP

and CST. Stimulation parameters from monopolar reviews were used to estimate vol-

umes of tissue activated and to determine the streamlines of the pathways inside

these volumes. The activated streamlines were related to the clinical observations.

Two models were computed, one for the HDP to estimate effect thresholds and one

for the CST to estimate capsular side effect thresholds. In a leave-one-subject-out

cross-validation, the models were used to suggest stimulation parameters. The

models indicated an activation of 50% of the HDP at effect threshold, and 4% of the

CST at capsular side effect threshold. The suggestions for best and worst levels were

significantly better than random suggestions. Finally, we compared the suggested

stimulation thresholds with those from the monopolar reviews. The median sugges-

tion errors for the effect threshold and side effect threshold were 1 and 1.5 mA,

respectively. Our stimulation models of the HDP and CST suggested STN DBS set-

tings. Prospective clinical studies are warranted to optimize tract-guided DBS pro-

gramming. Together with other modalities, these may allow for assisted STN DBS

programming.
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1 | INTRODUCTION

Deep brain stimulation (DBS) is an effective treatment for advanced

Parkinson's disease patients to control motor symptoms such as bra-

dykinesia, rigidity, or tremor. The subthalamic nucleus (STN) is a com-

mon DBS target in Parkinson's disease as it plays a relevant role in

motor control via the direct, indirect, and hyperdirect pathways (HDP)

(Emmi et al., 2020). Even if the mechanisms of action of STN DBS are

not fully understood, activation of the HDP has been shown to con-

tribute to the therapeutic effect (Miocinovic et al., 2018; Oswal

et al., 2021).

Stimulation models of the HDP and other pathways have been

previously developed to study the mechanisms of effect of DBS.

These models could also be used to suggest stimulation parameters.

They require tractography to identify the pathways and modeling of

electrical stimulation to estimate the activation of these pathways.

Then, the models' suggestions can be compared with the clinical

parameters to evaluate their accuracy and usefulness to facilitate

post-operative programming (Jaradat et al., 2022; Krack et al., 2002;

Mahlknecht et al., 2017). Methods to quantitatively estimate the

pathway activation are still evolving and are not fully established.

Previous studies estimated pathway activation through streamline

counts, that is, the number of streamlines activated (Brunenberg

et al., 2012; Plantinga et al., 2016; Vanegas-Arroyave et al., 2016).

But these counts have limitations and may not be a good indicator

of the biological density of axons (Jones et al., 2013; Smith

et al., 2015). One approach to better estimate pathway activation is

through filtering algorithms such as SIFT (Smith et al., 2013, 2015)

or COMMIT (Schiavi et al., 2020), which assign weights to

streamlines.

The main aim of the current study was to retrospectively suggest

stimulation parameters based on the stimulation models for the HDP

and corticospinal tract (CST). We developed two models with

weighted streamlines: one for the HDP to estimate the therapeutic

effect threshold and another for the CST to estimate the capsular side

effect threshold. We used the models to suggest stimulation parame-

ters and compared these against the monopolar reviews. These

reviews are currently standard-of-care in DBS programming and can

be time-consuming and complex with modern directional DBS sys-

tems that have eight contacts or more. Computer-assisted program-

ming with tract-guided suggestions may therefore in the future

facilitate programming and improve patient care.

2 | MATERIALS AND METHODS

2.1 | Patients

This monocentric retrospective study included 20 Parkinson's disease

patients (10 females, age range: 35–81 years) who underwent bilat-

eral implantation of the STN between August 2018 and June 2020.

The inclusion criteria were the following: (1) signed general consent

(study approved by local ethics committee [2020-02392]); (2) patients

implanted with Boston Vercise Cartesia directional leads (Boston Sci-

entific, Marlborough, MA); (3) available preoperative diffusion MRI

(dMRI) imaging.

2.2 | Image acquisition

Imaging was performed on a 3 Tesla scanner (Magnetom Skyra Fit,

Siemens, Germany) using a 32-channel receive head coil. The preoper-

ative protocol included a T1-weigthed MPRAGE (TR = 2020 ms,

TE = 3.49 ms, voxel resolution 1 � 1 � 1 mm3, acquisition time

4 min), a T2-weighted sequence (TR = 2400 ms, TE = 225 ms, voxel

resolution 1 � 1 � 1 mm3, acquisition time 14 min), and a dMRI

sequence acquired in the Siemens q-space mode (TR = 5900 ms,

TE = 111 ms, voxel resolution 2.2 � 2.2 � 2.2 mm3, in-plane acceler-

ation GRAPPA factor of 2, partial Fourier 7/8, field of view

211 � 211 mm2, acquisition time 12 min). Diffusion weighting, with

multiple b-values in the range of 0–3000 s/mm2 was applied along

123 directions uniformly distributed on a sphere (Supporting Informa-

tion Table S1). A postoperative CT scan was also acquired.

2.3 | Surgical procedure and postoperative
assessment

For a detailed description of our targeting approach and operative

procedure, we refer to a previously published report (Nowacki

et al., 2018). All patients underwent a monopolar contact review off

dopaminergic medication after 4–6 months to determine the thera-

peutic effect of DBS (Nguyen et al., 2019). The tested contacts

included the omnidirectional contacts, the directional contacts, as well

as pseudoring stimulation, that is, activating the three directional con-

tacts on the same level together. The stimulation amplitude was

increased from 1 to 8 mA in 0.5 mA steps (unless persistent side

effects appeared beforehand), while frequency and pulse width were

kept constant at 130 Hz and 60 μs. The effect threshold was defined

as the lowest current amplitude that resulted in full, or maximal,

reduction of wrist rigidity. The side effect threshold was defined as

the lowest current amplitude that resulted in persistent capsular side

effects. Data from 40 leads were included, with effect thresholds for

275 contacts and side effect thresholds for 281 contacts (Supporting

Information Table S2).

Lead localization was performed with the Lead-DBS toolbox (ver-

sion 2.5) (Horn & Kühn, 2015) in Matlab 2019b (The Mathworks,

Natick, MA) as in (Nguyen et al., 2019). For each lead and contact,

VTAs were computed as thresholded e-fields in the range of 1–8 mA

with steps of 0.5 mA. The SimBio/Fieldtrip pipeline was used with

default values for grey and white matter conductivities (0.33 and

0.14 S/m) and a threshold of 0.2 V/m to obtain binarized VTAs in

MNI template space (Montreal Neurological Institute). All VTAs were

then warped to patient-specific dMRI space with the inverse normali-

zation, which was computed with Advanced Normalization Tools in

Lead-DBS.
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2.4 | Tractography

2.4.1 | Diffusion MRI pre-processing

Prior to tractogram generation, preliminary denoising (Veraart

et al., 2016) and removal of Gibb's ringing artefacts (Kellner

et al., 2016) were performed in MRtrix3 (version 3.0) (Tournier

et al., 2019). FMRIB's Software Library (FSL, version 6.0.3) (Jenkinson

et al., 2012) was used for the correction of geometric distortion and

eddy current artefacts. Finally, correction for motion and eddy

currents (Andersson & Sotiropoulos, 2016) and susceptibility induced

distortions (Andersson et al., 2003) was performed. As no reversed-

phase encoding diffusion data were acquired, the toolbox Synb0

(Schilling, Blaber, et al., 2020) was used to generate an undistorted b0

image that served as input to FSL eddy.

2.4.2 | Generation of whole-brain tractogram

The tractography analysis was implemented in MRtrix3 (Jeurissen

et al., 2014) in the patient-specific dMRI space. After estimating the

group-average intensity normalization (Raffelt et al., 2012) on the pre-

processed diffusion images, voxel-wise estimates of fiber orientation

distribution functions were generated with constrained spherical

deconvolution (Tournier et al., 2007). For each patient, a whole-brain

tractogram of 10 million streamlines was created with the probabilistic

streamline algorithm iFOD2 (Figure 1a) (Tournier et al., 2010). The

anatomically constrained tractography framework (Smith et al., 2012)

was included to improve the tractography results by incorporating

anatomical information. Dynamic seeding (Smith et al., 2015) was

used to place seed points dynamically using the SIFT model. Finally,

the “spherical-deconvolution informed filtering of tractograms

F IGURE 1 Pathway activation by DBS. (a): Generation of whole-brain tractogram. (b): By using regions of interest and regions of avoidance,
the streamlines associated with the HDP (green) and CST (salmon) were selected from the whole-brain tractogram. STN is shown in orange. (c):
Bilateral leads are localized for each patient and VTAs are generated (red volumes). (d): Streamlines from the HDP (green) and from the CST
(salmon) activated by the VTAs (red). CST, corticospinal tract; DBS, deep brain stimulation; HDP, hyperdirect pathway; STN, subthalamic nucleus;
VTA, volume of tissue activated.
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(SIFT2)” method was applied to provide the streamlines' reconstruc-

tion with quantitative properties (Smith et al., 2015). By taking a

whole-brain tractogram as an input, the SIFT2 algorithm modifies the

streamlines' reconstruction so that the local streamlines' densities

become consistent with the densities of underlying fibers seen in the

diffusion images (Smith et al., 2022). As a result, the algorithm ascribes

a weight to each streamline of the whole-brain tractogram.

2.4.3 | Tractography of the HDP

The HDP streamlines were extracted from the whole-brain tractogram

(Figure 1b) using Brodmann areas (BA) 4 (i.e., primary motor cortex)

and 6 (i.e., supplementary motor area) (Freesurfer Brodmann area par-

cellation) and the STN (DISTAL atlas; Ewert et al., 2018) as regions of

interest. The internal and external globus pallidus and the red nucleus

(DISTAL atlas; Ewert et al., 2018), the substantia nigra (Human Motor

Thalamus Atlas; Ilinsky et al., 2018), and the striatum (Oxford-GSK-

Imanova Structural Striatal Atlas; Tziortzi et al., 2014) were used as

regions of avoidance. To accept streamlines as HDP, these had to

start in BAs 4 and 6 and terminate in the STN. A maximum length of

90 mm was used to avoid tracts passing through the STN and ending

in other subcortical regions. All regions of interest and regions of

avoidance were warped from the MNI space, where the atlases were

defined, to the patient-specific dMRI space.

2.4.4 | Tractography of the corticospinal tract

For obtaining the CST (Figure 1b), the following structures were used

as regions of interest: BAs 4 and 6; superior corona radiata, posterior

limb of internal capsule, cerebral peduncle and corticospinal tract

region (JHU DTI-based white-matter atlas; http://www.bmap.ucla.

edu/portfolio/atlases/ICBM_DTI-81_Atlas/); and medulla (Iglesias

et al., 2015). The medial lemniscus and corpus callosum regions (JHU

DTI-based white-matter atlas) and the cerebellum (Freesurfer Desikan

parcellation) were used as regions of avoidance. Additionally, a mini-

mum length of 80 mm and a maximum length of 135 mm were used.

2.5 | Pathway-guided programming

2.5.1 | Stimulation models

Two stimulation models were calculated, one for the HDP and another

for the CST using binary logistic regression. The independent variable

was the activation of HDP or CST and the binary dependent variable

was “no effect” or “effect” (Figure 2b). To estimate the activation of the

pathways, we first identified the HDP and CST streamlines inside a given

VTA (similar to other DBS structural connectivity studies, e.g., Horn

et al., 2017; Li et al., 2020) and calculated the sum of the weights of

those streamlines. Then we obtained the activation percentage by divid-

ing the sum of the weights of the streamlines inside the given VTA by

the total sum of the weights of the full HDP and CST, respectively.

For “no effect,” we used VTAs at 0.5 mA for each contact. We

chose this value to have some minimal activation without clinical

effect and to add some noise and make the model training more

robust. In contrast, choosing 0 mA for “no effect” would create sam-

ples that would all fall onto 0 percent activation.

For “effect,” we used the VTAs corresponding to the stimulation

thresholds for full effect from the monopolar reviews. For each con-

tact, we used the VTA at effect threshold to determine the activation

of the HDP and at side effect threshold to determine the activation of

the CST.

2.5.2 | Cross-validation and parameter suggestions

We evaluated the two stimulation models with nested cross-

validation (leave-one-subject-out) to select the best hyperparameters.

F IGURE 2 DBS parameter suggestion. (a): Generation of VTAs for all contacts in a lead. (b): Stimulation models generated with the VTAs
from the monopolar review. (c): By feeding VTAs into the stimulation models, we obtain effect and side effect threshold suggestions for all the
contacts in a lead. R1 and R2 correspond to the stimulation in pseudoring mode at the second and third level of the lead (i.e., R1 for contacts 2–
3–4 and R2 for contacts 3–4–5). DBS, deep brain stimulation; VTA, volume of tissue activated.
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We obtained the models' outcome prediction (i.e., “effect” or “no
effect”) for all VTAs of the left-out subjects. Finally, we used the

models' outcome predictions to suggest DBS parameters for the best

lead level and contact, worst level and contact, effect threshold and

side effect threshold (Figure 2c).

We started with an initial suggestion using the stimulation

models of the HDP and the CST separately. First, we suggested the

best level according to the HDP model. To obtain the best level, we

combined the directional contacts of a level to one pseudoring. Sec-

ond, we suggested the best contact and considered the directional

contacts as individual contacts. We labeled the level and contact with

the lowest effect threshold as best level and contact of that lead.

Then, we compared the best level and contact suggestion from the

model to the best level and contact from the monopolar review (also

defined by the lowest effect thresholds). Similarly, we suggested the

worst level and worst contact with the CST model. In this case, the

level and the contact with the lowest stimulation thresholds resulting

in capsular side effects were defined as worst level and worst contact,

respectively.

In a second step, we performed a combined suggestion using both

stimulation models together. First, we only kept those suggestions for

which the suggested therapeutic effect threshold was at most 1 mA

larger than the suggested side effect threshold. By doing this, the

model would not suggest levels or contacts that had side effects

before full therapeutic effect. From those remaining levels and con-

tacts, we suggested the best level and best contact using the lowest

effect threshold.

In a third step, we suggested the best level and best contact using

the therapeutic window (side effect thresholds minus effect threshold)

as selection criterion.

To test whether the model suggestions were significantly better

than random suggestions, we performed a permutation test. We per-

muted the vector containing the model's suggestions and calculated

the balanced accuracy for 100,000 permutations. Then we applied a

right-tailed test and calculated the p-value of the model suggestions.

We used the balanced accuracy as the test statistic due to our highly

unbalanced classes (i.e., one best level and one best contact per lead

but three non-best levels or seven non-best contacts per lead). This

classification metric is the arithmetic mean of the sensitivity (i.e., true

positive rate) and the specificity (i.e., true negative rate) and is appro-

priated when one of the target classes appears a lot more than the

other, as it is in our case. We calculated the balanced accuracy as

expressed by Equation (1) (TP: true positives, TN: true negatives, FP:

false positives, FN: false negatives):

Balanced acccuracy¼0:5� TP
TPþFN

þ TN
TNþFP

� �
ð1Þ

Finally, we compared the stimulation thresholds of the monopolar

review with the models' threshold suggestion (i.e., lowest stimulation

amplitude resulting in therapeutic effect or side effect). We obtained

the threshold suggestion error as absolute difference between model

threshold and monopolar review threshold.

2.6 | Comparison with normative tract atlases

To compare our approach (i.e., tractography of the HDP and CST,

VTA modeling, and logistic regression classifiers), we obtained the

stimulation models and DBS parameter suggestions using normative

tract atlases. Using the HDP from the Middlebrooks et al. (2020) tract

atlas and the CST from the Meola et al. (2016) tract atlas with Lead-

DBS, we determined the streamline counts and percentages of the

HDP and CST passing through the VTAs. Similar to the stimulation

models using patient-specific tractography, we related the percentage

of activation to the clinical observations with logistic regression

models. Finally, we performed the parameter suggestions. All these

computations were done in MNI template space and not warped into

patient space.

2.7 | Data analysis

Data analysis was performed in Python. For the stimulation models,

we used the scikit-learn library (version 1.0.2). We used GridSearchCV

for hyperparameter selection and to train the models with cross-

validation. Permutation tests against random selection were per-

formed with in-house built code.

3 | RESULTS

3.1 | Patient-specific tractography

For all 20 patients, we reconstructed the whole-brain tractogram and

obtained the streamlines corresponding to the HDP and CST in both

hemispheres. The streamlines corresponding to the HDP started in

the motor cortex (BAs 4 and 6) and generally ended in the dorsolateral

part of the STN (Supporting Information Figures S1 and S2). The

streamlines from the CST also started in BAs 4 and 6 but descended

ipsilaterally through the posterior limb of internal capsule and cerebral

peduncle to the brainstem.

3.2 | Stimulation models

DBS leads were localized for all patients (Supporting Information

Figure S3) and VTAs were computed to calculate the pathway activa-

tion percentages. Then, stimulation models for the HDP and CST were

obtained with logistic regression to classify the VTAs as “no effect”
(0% probability of effect) or “effect” (100% probability of effect)

(Figure 3). The models' classification accuracies for the train and test

sets are shown in Table 1. The models' parameters (i.e., coefficients,

intercept, and odds ratio) are listed in Supporting Information

Table S3.

The HDP model (Figure 3a) implies that on average 50% of the

HDP must be activated for a 100% probability of effect. The CST

model (Figure 3b) implies that on average, 4% of the CST must be
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activated for a 100% probability of capsular side effects. In both

cases, the activation percentage of the pathways corresponds to the

percentage of the sum of the weights.

3.3 | Parameter suggestions

In the initial suggestions, we obtained the best and worse lead levels

and contacts using the stimulation models of the HDP and CST sepa-

rately. The model's suggestions for best level matched the best clinical

levels with a balanced accuracy of 63.1% (p = .002). For the best con-

tacts, the model's suggestions matched the best clinical contacts with

a balanced accuracy of 49.6% (p = .602). Regarding the worst level,

the model's suggestions matched the worst clinical levels with a bal-

anced accuracy of 67.9% (p = 3e-05). And for the worst contact, the

model's suggestions matched the worst clinical contacts with a bal-

anced accuracy of 65.1% (p = .0001).

In the combined suggestions, we suggested the best levels and

contacts using both stimulation models together. We excluded “best”
level or contact suggestions where capsular side effects would appear

before therapeutic effect. The suggestions for best level matched the

best clinical levels with an accuracy of 62.2% (p = .003). For the best

contacts, the model's suggestions matched the best clinical contacts

with an accuracy of 47.7% (p = .771).

When using the therapeutic window as selection criterion, the

suggestions for best level matched the best clinical levels with an

accuracy of 63.9% (p = .001). For the best contacts, the model's sug-

gestions matched the best clinical contacts with an accuracy of 51.4%

(p = .407). All values for sensitivity (i.e., true positive rate), specificity

(i.e., true negative rate), balanced accuracy and p-values of the permu-

tation tests are listed in Table 2.

As the best contact suggestions were statistically non-significant,

we calculated the distance between the best contact suggestions of

the model and the best contact of the monopolar review. For the best

contact suggestions, half of the wrongly suggested contacts were at

the same level as the best clinical contacts (Supporting Information

Tables S8 and S10).

Finally, we compared the suggested effect thresholds and side

effect thresholds to the thresholds from the monopolar reviews. The

absolute errors for all leads are shown in Figure 4. The median error

for all VTAs was 1 mA for the effect thresholds and 1.5 mA for the

side effect thresholds. We also analyzed the signed error and did not

find systematic overestimation or underestimation by the models

(Supporting Information Figure S5).

3.4 | Stimulation models with normative tract
atlases

We obtained the stimulation models and the parameter suggestions

with the normative tract atlases. The activation threshold at 50%

probability of effect was considerably larger than with patient-specific

TABLE 1 Average classification
accuracy and 95% confidence interval
(CI) of the HDP and CST logistic
regression models with patient-specific
tractography.

Train set Test set

Average accuracy (%) 95% CI Average accuracy (%) 95% CI

HDP model 83.2 82.9–83.5 79.4 72.7–86.2

CST model 84.6 84.3–84.8 84.2 78.2–90.2

Abbreviations: CST, corticospinal tract; HDP, hyperdirect pathway.

F IGURE 3 Stimulation models with weighted streamlines. (a): Hyperdirect pathway (HDP) model for therapeutic effect. (b): Corticospinal
tract (CST) model for capsular side effects. Logistic regression curves differentiate between ‘no effect’ (0% probability of effect) and ‘effect’
(100% probability of effect). Gray curves correspond to the individual fits in the leave-one-subject-out cross-validation, and colored curves
represent the average fit for all subjects.
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tractography (i.e., 30% for the HDP and 35% of CST versus 10% and

0.9%, respectively). In both models, for a 100% probability of effect,

all the streamlines in the pathway had to be activated (Supporting

Information Figure S6). The models classification accuracies for the

train and test sets are shown in Table 3. The models' parameters

(i.e., coefficients, intercept and odds ratio) are listed in Supporting

Information Table S4.

The atlas-guided suggestions performed similarly well as the

model suggestions based on patient-specific tractography

(e.g., balanced accuracy of 62.9% for best level; all values listed in

Table 4). However, using the normative tract atlases was more accu-

rate to suggest the best contact for therapeutic window (60.1%

vs. 51.4%).

Finally, we compared the suggested effect thresholds and side

effect thresholds to the thresholds from the monopolar reviews. The

absolute errors for all leads are shown in Supporting Information

Figure S8. The median error for all VTAs was 1 mA for the effect

thresholds and 3 mA for the side effect thresholds. The signed errors

TABLE 2 Classification metrics for the models' suggestions with patient-specific tractography.

Sensitivity

(TPR)

Specificity

(TNR)

Balanced

accuracy (%)

p-value of

permutation test

Initial suggestions HDP Best level 0.58 0.68 63.1 .002

Best contact 0.36 0.63 49.6 .602

CST Worst level 0.69 0.67 67.9 3e-05

Worst

contact

0.62 0.68 65.1 .0001

Combined

suggestions

HDP and CST Best level 0.54 0.71 62.2 .003

Best contact 0.32 0.64 47.7 .771

Therapeutic window HDP and CST Best level 0.51 0.76 63.9 .001

Best contact 0.24 0.79 51.4 .407

Note: Balanced accuracy scores account for the percentage of suggested best and worst levels and contacts that match the clinical classification. Bold p-

values correspond to significant results.

Abbreviations: CST, corticospinal tract; HDP, hyperdirect pathway; TNR: true negative rate; TPR: true positive rate.

F IGURE 4 Absolute threshold suggestion error in leave-one-subject-out cross-validation. (a): Threshold suggestion error for effect (activation
of HDP). (b): Threshold suggestion error for side effect (activation of the CST). Left panels contain violin plots with the absolute threshold errors
for all contacts; miniature boxplots show the quartiles and the median value. Right panels contain boxplots for individual leads with scatter points
showing individual contact errors. CST, corticospinal tract; HDP, hyperdirect pathway.

SEGURA-AMIL ET AL. 7

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26390 by U
niversität B

ern, W
iley O

nline L
ibrary on [21/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



did not show a systematic overestimation or underestimation by the

models (Supporting Information Figure S9).

4 | DISCUSSION

This study used patient-specific tractography and stimulation models

of the HDP and CST to suggest DBS parameters. The models sug-

gested the best levels more accurately than random suggestions. Sug-

gestions of the best contacts and the effect and side effect thresholds

proved to be more challenging and warrants further investigations.

4.1 | Patient-specific tractography

Here, we performed patient-specific tractography to obtain the HDP

and CST. Other studies substitute patient dMRI data with tractogra-

phy atlases (Petersen et al., 2019) or with normative connectome

data, where brain connectivity is calculated and averaged from a large

cohort of subjects (Wang et al., 2021). The use of normative connec-

tomes or tractography atlases is motivated by the lack of or the lower

quality of clinical routine dMRI data and data heterogeneity across

centers. But the main limitation of atlases or normative connectomes

is that they may not be able to describe individual differences in con-

nectivity profiles.

One limitation of probabilistic tractography on patient-specific

dMRI is the high number of false-positive connections (Petersen

et al., 2019; Schiavi et al., 2020; Schilling, Petit, et al., 2020). It has

been shown that manually placed or template-driven constraints can

improve the anatomical accuracy of the estimated connections

(Schilling, Petit, et al., 2020). Therefore, we defined regions of interest

and regions of avoidance to improve the accuracy of the HDP and

CST tractography. Both our pathways were in general accordance

with the literature of anatomical tracing and tractography (Emmi

et al., 2020; Temiz et al., 2020; Welniarz et al., 2017). In addition, to

improve the accuracy and the quantitative properties of the tractogra-

phy results, we used an advanced technique with constrained-

spherical deconvolution (Jeurissen et al., 2014). We estimated the

fiber orientation distribution per voxel, and performed anatomically

constrained tractography (Smith et al., 2012), dynamic seeding and fil-

tering with SIFT2 (Smith et al., 2015). The use of filtering algorithms

such as SIFT2, which assigns weights to the streamlines, addresses

the limitations of streamlines counts and enables quantitative assess-

ment of fiber connectivity (Smith et al., 2022).

4.2 | Stimulation models with patient-specific
tractography

4.2.1 | HDP stimulation model

In the HDP model, an activation of 50% of the sum of the weights

resulted in a 100% probability of therapeutic effect. This suggests that

the HDP is highly activated at maximal rigidity reduction. A previous

TABLE 3 Average classification
accuracy and 95% confidence interval
(CI) of the HDP and CST logistic
regression models with normative tract
atlases.

Train set Test set

Average accuracy (%) 95% CI Average accuracy (%) 95% CI

HDP model 78.4 78.0–78.8 72.4 65.3–78.8

CST model 87.1 86.8–87.5 48.6 47.0–50.2

Abbreviations: CST, corticospinal tract; HDP, hyperdirect pathway.

TABLE 4 Classification metrics for the models' suggestions with normative tract atlases.

Sensitivity
(TPR)

Specificity
(TNR)

Balanced
accuracy (%)

p-value of
permutation test

Initial suggestions HDP Best level 0.60 0.66 62.9 .002

Best contact 0.36 0.69 52.8 .300

CST Worst level 0.29 0.99 64.1 .000

Worst

contact

0.17 0.95 56.3 .005

Combined

suggestions

HDP and CST Best level 0.60 0.66 62.9 .002

Best contact 0.36 0.69 52.7 .308

Therapeutic window HDP and CST Best level 0.70 0.67 69.3 3e-05

Best contact 0.47 0.72 60.1 .009

Note: Balanced accuracy scores account for the percentage of suggested best and worst levels and contacts that match the clinical classification. Bold p-

values correspond to significant results.

Abbreviations: CST, corticospinal tract; HDP, hyperdirect pathway; TNR, true negative rate; TPR, true positive rate.
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study reported an activation for the HDP of 13.6 ± 1.2% of the

streamline counts in one patient at the clinical effective stimulation

setting (Gunalan et al., 2017). However, the activation of the HDP

was constrained by stimulation spread into the internal capsule fibers

of passage (Gunalan et al., 2017). In a more recent study, Noecker

et al. (2021) developed a DBS activation model containing nine gen-

eral pathways from a pathway atlas (Petersen et al., 2019). They ana-

lysed three STN DBS patients and observed that the directional

contacts located at the dorsal border of the STN activated a wider

range of pathways, including the internal capsule fibers of passage.

Their results showed a large variance in the inter-patient activation

percentages and no consistent activation of the motor HDP (Noecker

et al., 2021).

Based on 20 patients, our activation of the motor HDP was con-

siderably larger and more consistent than reported by Gunalan et al.

(2017) and Noecker et al. (2021). This value corresponded to the per-

centage of the sum of the weights of HDP required for a 100% proba-

bility of therapeutic effect. For a 50% probability of therapeutic

effect, our model suggested an activation threshold slightly above

10%, which would be in line with the 13.6% of activation obtained by

Gunalan et al. (2017). Contrary to the results from Noecker et al.

(2021), we observed a consistent activation of the motor HDP: 76.4%

of the VTAs at maximal therapeutic effect had an activation of the

HDP above 10%.

Differences in the activation thresholds can be due to many fac-

tors. The streamline generation (patient-specific tractography

vs. normative tract atlas, the selection of included pathways) and dif-

ferences in pathway activation modeling (streamlines activated by the

VTA versus axon cable models) may be two main factors.

4.2.2 | CST stimulation model

In the CST model, an activation of 4% of the sum of the weights

resulted in a 100% probability of capsular side effects. For a 50%

probability, the activation threshold was at 1%. This suggests that

even small percentages of CST activation would lead to capsular side

effects. The models of Gunalan et al. (2017) and Noecker et al. (2021)

reported the activation of CST fibers at clinical DBS settings. In Guna-

lan et al. (2017), there was no activation of the internal capsule fibers

of passage at the effective stimulation setting; in Noecker et al.

(2021), only the best responder patient had a stimulation of the motor

internal capsule fibers less than 2%. To our knowledge, there are no

other studies quantifying the activation of the CST and relating it to

the side effect thresholds by means of tractography and stimulation

models.

4.3 | Parameter suggestions

The stimulation models predicted the best stimulation levels with an

accuracy above 60%, and the best stimulation contacts with an accu-

racy of around 50% (Table 2). To test the statistical significance of the

models' suggestions, we performed permutation tests (Supporting

Information Figures S4 and S7). In the permutation tests, we kept the

same number of best levels and best contacts as in the models' origi-

nal suggestions. Given the unbalanced data set (very few best levels,

contacts), the permutation tests were more stringent than a binomial

test. With a binomial test assuming one best contact per lead, our ini-

tial best contact suggestions would have been statistically signifi-

cant (p < .05).

The accuracy of best contact suggestion may have been affected

by incomplete and shortened monopolar reviews. In our cohort,

60.8% of all directional contacts were tested. In particular, they were

not tested when the effect threshold of the level was above the side

effect threshold, or when the effect threshold of the level was less

than 3 mA and there was still a margin to the side effect threshold. If

all directional contacts had been tested, we would have had more data

to compare with the models' suggestions, and the accuracy could have

improved.

Next, we suggested effect thresholds and capsular side effect

thresholds. The absolute median error for the effect threshold was

1 mA, and 1.5 mA for the side effect threshold (Figure 4). But for indi-

vidual leads, we observed a higher variability. Considering average

effect thresholds of 2–3 mA for STN DBS and that contacts were

tested with 0.5 mA steps, these errors could result in suggestions

being two or three steps away from the optimal threshold. These dif-

ferences could be due to errors in the lead reconstruction, in the

patient-specific tractography, and due to the VTA generation model.

We also computed parameter suggestions with normative tract

atlases and compared them to our suggestions with patient-specific

tractography. We expected normative tract atlases to have lower vari-

ability than tracts derived from patient-specific tractography. This

might have led to more accurate suggestions. But that was not the

case and the suggestions for best levels had similar balanced accura-

cies. On the other hand, the suggested side effect thresholds were

less accurate with the normative tract atlases than for the patient-

specific tractography models. In the normative tract atlas model, an

activation of 35% of the pathway was required to classify a VTA as

side effect. As a result, the model only found capsular side effects in

58 out of the 276 settings. In the HDP models, the difference

between patient-specific tractography and normative tract atlases

was less clear. This can be due to the reliability of the patient-specific

HDP tractography or the assumption of the HDP as sole mediator of

rigidity improvement. Based on our findings, we believe that patient-

specific tractography, with all its limitations, can be a valuable tool in

DBS programming, in particular to reduce the probability of side

effects.

Other approaches to facilitate DBS programming include, for

instance, probabilistic stimulation maps (Dembek et al., 2019; Nguyen

et al., 2019), image-based automated algorithms (Roediger

et al., 2021), and electrophysiology (Miocinovic et al., 2018; Shah

et al., 2022; Tinkhauser et al., 2018). Probabilistic stimulation maps

have demonstrated a correlation between sweet spot activation and

clinical improvement. Using the overlap between a VTA and the sweet

spot, these models try to predict the clinical outcome of a given VTA.
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Contrary to our study, the prediction models based on sweet spots

rely on the voxel-based statistical analysis of a cohort of patients

rather than incorporating patient-specific tractography. The StimFit

algorithm also suggests stimulation settings (Roediger et al., 2021).

This method also had a moderate degree of correlation between the

suggestions and the empirical clinical settings. Finally, electrophysio-

logical recordings have also been used to identify the most effective

stimulation contacts, with an accuracy similar to our models (Shah

et al., 2022; Tinkhauser et al., 2018).

However, suggestions may not need to perfectly match clinical

settings and yet have similar clinical improvement. Therefore, pro-

spective studies are needed to evaluate the motor improvement of a

model's suggestions.

4.4 | Limitations and future work

Our study has several limitations. One major limitation of using

patient-specific dMRI is data quality. Fiber tractography bundle seg-

mentation will depend on the scanner acquisition and the processing

pipeline (Schilling et al., 2021). Care must be taken when deriving and

interpreting quantitative measures of connectivity. Besides, the stimu-

lation models should be further validated with patient-specific tracto-

graphy obtained from other dMRI datasets to test its reliability.

Our pathway stimulation models relied on VTAs to estimate the

stimulation volume and recruited streamlines. But VTA models might

have limitations in the subthalamic region (Noecker et al., 2021). In

our models, we did not consider different activation thresholds for

the two pathways (i.e., HDP and CST). But recent work from Bower

and McIntyre (2020) showed that HDP terminating axons have a

lower activation threshold than fibers of passage and not accounting

for these differences may be influencing our models' activation

thresholds. VTA generation models implementing driving-force

methods could better estimate the response of complex axonal path-

ways to DBS (Noecker et al., 2021).

The definition of the HDP is not fully established yet (Bingham

et al., 2023). It has generally been described as collateral fibers of cor-

ticofugal axons descending to lower brainstem regions. In our study,

we reconstructed this pathway as streamlines starting in the motor

cortex and ending in the STN. Other studies have included the HDP

as collateral fibers of corticofugal axons, but only including collaterals

with terminals in the STN (Bingham & McIntyre, 2022; Gunalan

et al., 2017; Petersen et al., 2019). However, single-axon tracing stud-

ies in the rat (Kita & Kita, 2012) and in primates (Coudé et al., 2018)

observed that around half of the collaterals innervating the STN con-

tinued to the zona incerta and other brain regions. The reconstruction

of the HDP with patient-specific tractography, as performed in our

study and by Petersen et al. (2017), is limited by the tractography

approach itself (i.e., by definition, a streamline has a single start point

and end point) and collaterals from an individual streamline cannot be

obtained. Since the available histological data are suggesting that col-

laterals with terminals in the STN are only a fraction of the HDP,

future models should also investigate the HDP's more intricate anat-

omy (Bingham & McIntyre, 2022) and terminals in regions beyond

the STN.

Although previous studies suggested an important role of the

HDP for therapeutic effect (Miocinovic et al., 2018; Oswal

et al., 2021), the activation of other white matter tracts and connec-

tivity to other basal ganglia nuclei might also be influential. Neither

previous studies nor our study modeled the activation of the indirect

pathway. This pathway may also mediate the therapeutic effect. It

connects the STN to the globus pallidus and it runs in a similar ana-

tomical space as the HDP (Weaver et al., 2020). But the methods used

in the present study cannot sufficiently distinguish activation of the

HDP from activation of the indirect pathway due to the close location

of their terminals in the STN.

The accuracy of our models' suggestions for best stimulation con-

tacts and thresholds demonstrated the challenges of tract-based pro-

gramming. While the models suggested the best levels with a

balanced accuracy above 60%, which would be acceptable for DBS

practice, the suggestions for contacts and thresholds had a lower

accuracy and still need improvement. In the future, the stimulation

models developed herein may be expanded to include more pathways

to pursue personalized connectomic programming (Hollunder

et al., 2022). This could then be used to provide symptom-specific

programming, that is, activation of individualized networks according

to the symptom spectrum of specific patients. But prospective clinical

studies are required to assess the value of these symptom-specific

suggestions.

5 | CONCLUSION

Stimulation models of the HDP and CST were used to model thera-

peutic effect and side effects and suggested DBS settings with a good

balanced accuracy. Improvement of dMRI and tractography as well as

prospective clinical studies are warranted to optimize tract-guided

DBS programming. Together with other modalities, these may allow

for assisted STN DBS programming.
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