66 research outputs found

    A comparative study on violent sloshing with complex baffles using the ISPH method

    Get PDF
    The Smoothed Particle Hydrodynamics (SPH) method has become one of the most promising methods for violent wave impact simulations. In this paper, the incompressible SPH (ISPH) method will be used to simulate liquid sloshing in a 2D tank with complex baffles. Firstly, the numerical model is validated against the experimental results and the simulations from commercial CFD software STAR-CCM+ for a sloshing tank without any baffle. Then various sloshing tanks are simulated under different conditions to analyze the influence of the excitation frequency and baffle configuration. The results show that the complex baffles can significantly influence the impact pressures on the wall caused by the violent sloshing, and the relevant analysis can help find the engineering solutions to effectively suppress the problem. The main purpose of the paper is to study the practical importance of this effect

    Time estimation and beta segregation: An EEG study and graph theoretical approach

    Get PDF
    Elucidation of the neural correlates of time perception constitutes an important research topic in cognitive neuroscience. The focus to date has been on durations in the millisecond to seconds range, but here we used electroencephalography (EEG) to examine brain functional connectivity during much longer durations (i.e., 15 min). For this purpose, we conducted an initial exploratory experiment followed by a confirmatory experiment. Our results showed that those participants who overestimated time exhibited lower activity of beta (18�30 Hz) at several electrode sites. Furthermore, graph theoretical analysis indicated significant differences in the beta range (15�30 Hz) between those that overestimated and underestimated time. Participants who underestimated time showed higher clustering coefficient compared to those that overestimated time. We discuss our results in terms of two aspects. FFT results, as a linear approach, are discussed within localized/dedicated models (i.e., scalar timing model). Second, non-localized properties of psychological interval timing (as emphasized by intrinsic models) are addressed and discussed based on results derived from graph theory. Results suggested that although beta amplitude in central regions (related to activity of BG-thalamocortical pathway as a dedicated module) is important in relation to timing mechanisms, the properties of functional activity of brain networks; such as the segregation of beta network, are also crucial for time perception. These results may suggest subjective time may be created by vector units instead of scalar ticks. © 2018 Ghaderi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Time estimation and beta segregation: An EEG study and graph theoretical approach

    Get PDF
    Elucidation of the neural correlates of time perception constitutes an important research topic in cognitive neuroscience. The focus to date has been on durations in the millisecond to seconds range, but here we used electroencephalography (EEG) to examine brain functional connectivity during much longer durations (i.e., 15 min). For this purpose, we conducted an initial exploratory experiment followed by a confirmatory experiment. Our results showed that those participants who overestimated time exhibited lower activity of beta (18�30 Hz) at several electrode sites. Furthermore, graph theoretical analysis indicated significant differences in the beta range (15�30 Hz) between those that overestimated and underestimated time. Participants who underestimated time showed higher clustering coefficient compared to those that overestimated time. We discuss our results in terms of two aspects. FFT results, as a linear approach, are discussed within localized/dedicated models (i.e., scalar timing model). Second, non-localized properties of psychological interval timing (as emphasized by intrinsic models) are addressed and discussed based on results derived from graph theory. Results suggested that although beta amplitude in central regions (related to activity of BG-thalamocortical pathway as a dedicated module) is important in relation to timing mechanisms, the properties of functional activity of brain networks; such as the segregation of beta network, are also crucial for time perception. These results may suggest subjective time may be created by vector units instead of scalar ticks. © 2018 Ghaderi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Corrected First-order Derivative ISPH in Water Wave Simulations

    Get PDF
    The smoothed particle hydrodynamics (SPH) method is a meshless numerical modeling technique. It has been applied in many different research fields in coastal engineering. Due to the drawback of its kernel approximation, however, the accuracy of SPH simulation results still needs to be improved in the prediction of violent wave impact. This paper compares several different forms of correction on the first-order derivative of ISPH formulation aiming to find one optimum kernel approximation. Based on four benchmark case analysis, we explored different kernel corrections and compared their accuracies. Furthermore, we applied them to one solitary wave and two dam-break flows with violent wave impact. The recommended method has been found to achieve much more promising results as compared with experimental data and other numerical approaches

    A set of canonical problems in sloshing. Part 0: Experimental setup and data processing

    Get PDF
    In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described
    corecore