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* a_ghaderi@tabrizu.ac.ir

Abstract

Elucidation of the neural correlates of time perception constitutes an important research

topic in cognitive neuroscience. The focus to date has been on durations in the millisecond

to seconds range, but here we used electroencephalography (EEG) to examine brain func-

tional connectivity during much longer durations (i.e., 15 min). For this purpose, we con-

ducted an initial exploratory experiment followed by a confirmatory experiment. Our results

showed that those participants who overestimated time exhibited lower activity of beta (18–

30 Hz) at several electrode sites. Furthermore, graph theoretical analysis indicated signifi-

cant differences in the beta range (15–30 Hz) between those that overestimated and under-

estimated time. Participants who underestimated time showed higher clustering coefficient

compared to those that overestimated time. We discuss our results in terms of two aspects.

FFT results, as a linear approach, are discussed within localized/dedicated models (i.e.,

scalar timing model). Second, non-localized properties of psychological interval timing (as

emphasized by intrinsic models) are addressed and discussed based on results derived

from graph theory. Results suggested that although beta amplitude in central regions

(related to activity of BG-thalamocortical pathway as a dedicated module) is important in

relation to timing mechanisms, the properties of functional activity of brain networks; such

as the segregation of beta network, are also crucial for time perception. These results may

suggest subjective time may be created by vector units instead of scalar ticks.

Introduction

Time in classical physics is scaled by an electron transition frequency. The frequency of the

microwave spectral line emitted by cesium atoms is used as a reference in a cesium standard or

cesium atomic clock. According to this scale, time is a scalar variable with an accumulative

property. A series of psychophysiological studies has been also considered subjective time with

scalar properties [1–4]. This idea, typically referred to as the Scalar Expectancy Theory (STE),

suggests that there is a linear relation between psychological magnitude of perceived time and
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objective clock reading of time [5]. In agreement with STE, Weber’s law states that the variabil-

ity of time estimations has a linear relation with duration of intervals [1]. The information-

processing variant of STE [2] is a prominent example of the pacemaker-accumulator based

models of interval timing. Models that fall in the pacemaker-accumulator family assume that a

modular internal clock is involved in time estimation and perception [4,6–9]). In this frame-

work, the internal clock ticks as a classical cesium clock and the differences between the time

that runs with internal clock and physical clock has been raised by differences in parameters

such as: the number of pulses in pacemaker, storage of accumulator, and decision making

processes.

On the flip side, modern physics suggests that time is a vector with direction or arrow [10]

and time can be added to other similar vectors such as the space unit vectors [11]. As a matter

of fact, the fundamental inconformity between classical and modern conceptualization of time

is consequent of considering time as a vector. More precisely the classical conceptualization of

time does not presume directionality and additivity of time to space vectors, and treats time as

a scalar generally independent from speed, movement and information (entropy) whereas

time in the modern conceptualization is strongly related to speed and information. Although

alternative time perception models have been presented, asserting that subjective time can be

accounted for without considering a dedicated internal clock, the vector property of physical

time has been typically ignored. These models assume alternative functional architectures such

as neural state transitions involved in time perception [12–14]. According to some of these

accounts temporal information could just be an epiphenomenon which can be considered as a

byproduct of other fundamental events such as energy spent during neural processing in the

brain [12].

However, the present conceptualizations are unable to account for certain empirical facts

about time perception. For instance, the properties that are treated as hallmarks of interval

timing (e.g., scalar property) are violated in the case of some individuals [15] (but see [16] for

dependencies of results on time scale and tasks utilized). An important differentiation that is

often made in order to resolve some of these discrepancies is treating the timing system not as

a unitary function, but rather as multiple functions (e.g., sub-second timing vs. supra-second

timing vs. circadian timing; [17]).

Many human activities in natural settings and modern life last for several minutes (e.g., eat-

ing, listening to music, cooking). Long durations, typically referred to as cognitive time (a part

of a “supra-second system”), are associated with general aspects of cognition such as con-

sciousness, attention, and working-memory processes [16]. Consequently, cognitive time is

strongly amenable to the effect of various contextual factors [18] and internal states such as

personality, emotional state, arousal, cognitive load, and mood [19,20].

However, psychological and physiological studies in the area of interval timing have focused

on the judgment of durations in the seconds to minutes range and they rarely address time

intervals that last several minutes. This is partly due to the practical issues (e.g., number of tri-

als that can be achieved in a test) and partly because minutes long intervals are implicitly

assumed to rely on complex integration of multi-modal functions.

Most of electrophysiological studies were also performed to investigate short durations

using event related potentials (ERPs) approach and by the frequency analysis [21]. In the fre-

quency domain that is intended in this study, delta (1–4 Hz) and beta (13–30 Hz) EEG/MEG

oscillations have been recently mentioned as EEG oscillatory rhythms that reflect neural pro-

cessing of time [22]. Neural coupling in the delta and beta band is reported in relation to tempo-

ral prediction accuracy of the auditory beats [22–23]. Beta oscillation is also related to motor

timing [24], which may provide a mechanism for time estimation of short intervals (1–2 sec-

onds) [25]. Beta oscillation is further argued to be associated with the internal representation of
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time and longer produced durations (~2.5s range) are correlated with higher beta power [26].

Evidence also suggests that increased EEG/MEG delta activity occurs during anticipation and

expectancy conditions [27,28].

In the present study, EEG was recorded during a mindfulness state task in order to investi-

gate the relationship between EEG signals and over/under estimation of many-minutes-long

(i.e., 15 min) intervals. Mindfulness is a manner of paying attention on purpose without judg-

ment and in the present moment [29]. We have specifically examined mindfulness because it

involves many aspects of brain function including executive function and it has recently been

investigated in relation to time perception [30–32]. These studies suggest that increased atten-

tion and awareness may cause time distortion and this prediction has been confirmed by the

overestimation of time in the order of short durations [30,31]. However, as outlined earlier,

long-term durations have not been tested in this context. We use Fast Fourier Transform

(FFT) analysis as a conventional linear approach and graph theoretical analysis as an alterna-

tive nonlinear approach for electroencephalography (EEG) analysis of the temporal judgments

of relatively long intervals (i.e., 15 minutes). Graph theoretical measures can clarify some non-

linear brain function properties such as brain segregation/integration and information propa-

gation in the brain [33]. According to the nature of graph theoretical analysis, graph measures

may clarify a time perception mechanism that is not complying from a scalar framework and

confirms a nonlinear mechanism such as the vector presentation of perceived time. Based on

earlier EEG studies, we predicted that delta and beta activity would be related to the differences

in subjective time during mindfulness. Significant differences of FFT or graph theoretical

results between subjects who underestimated and overestimated time can be discussed in term

of an internal clock model, as a linear approach, or vector presentation of perceived time as a

nonlinear framework.

Method

Procedure

Two experiments were conducted, one exploratory (Study 1) and the other confirmatory

(Study 2). In both experiments, participants were tested in a Faraday cage and EEG was

recorded throughout the experiment. Instructions were announced via an audio recording. In

the first step, participants were in the resting state in eyes open condition without substantial

body and gross eye movements for 15 minutes. After 15 minutes, participants were told, using

a ruler as a prop, that the elapsed time was 15 units on the ruler. In the second step, partici-

pants engaged in a mindfulness task (a body scan task, described below). After 15 minutes,

participants estimated the elapsed time of the condition in comparison to the rest state and

indicated their judgment of elapsed time as a unit number on the ruler. Experiment 2 was per-

formed as a test of the reliability of the results from Experiment 1. To this end, the procedure

from Experiment 1 was repeated with a smaller sample and the analyses developed in Experi-

ment 1 were applied to the data gathered experiment 2.

Participants’ selection and ethical codes

The study was conducted in accordance with the declaration of Helsinki and had been

approved by the central ethical committee of Islamic Azad University. Study was meeting cri-

teria of the ethical committee check list; including confidentiality of participants’ name during

the study and in publications or sharing data, insight of participants about aim and process of

study, participants’ free will to leave the study in any time by any reason. In addition no finan-

cial or non-financial beneficial fair between researchers and participants was accepted. Sub-

jects’ data were recorded by subject number only, and are ready to disclose to anyone who
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works in the same filed or is interested. All participants were provided written informed con-

sent after two public meeting about the aim and procedure of study and private question and

answer. All of the participants had normal hearing and normal or corrected-to-normal vision,

without any history of psychiatric or neurological disorders or diseases. More information

about the ethical processes is accessible by contact to Professor Mehrdad Hashemi (mhashe-

mi@iautmu.ac.ir). In regard to acceptance of ethical committee, all data (without participant’s

names) have been shared as a public dataset at: https://figshare.com/articles/Over_zip/

5970886. In experiment one, forty-seven healthy right-handed participants were tested and in

experiment two, seventy volunteers were tested.

All of the participants had normal hearing and normal or corrected-to-normal vision,

without any history of psychiatric or neurological disorders or diseases. In the first study, five

participants who had noisy EEG (muscle activity and exorbitance eye blinks) were excluded

and 42 participants (17 female) aged between 18 and 35 (mean: 25.79 and SD: 4.72) were

included in the analysis. Overestimation of time was observed in 17 participants (6 female;

aged between: 20 and 35; mean: 25.14; SD: 4.61) and underestimation was observed for 25

participants (11 female; aged between 18 and 35; mean: 26.43; SD: 4.93). In Experiment 2,

participants (7 female) were between 21 and 39 years old (mean: 29.52 and SD: 6.43). Eight

participants (3 female; aged between 22 and 37; mean: 29.88; SD: 5.17) estimated time as lon-

ger than 15 minutes, while the underestimation of time was observed in 9 participants (4

female; aged between 22 and 39; mean: 29.22; SD: 7.69). Table 1 shows briefly the gender and

age of participants.

EEG acquisition and signal processing

EEG acquisition was performed in Iranian Neuro-Wave Lab. Twenty-one channels of EEG

were recorded with a Brainmaster amplifier in an isolated faraday room using Ag/AgCl elec-

trodes in the linked-ear montage. The sampling rate was 256 Hz and a 40 Hz low-pass filter

was applied. EEG was recorded using a nineteen channel Electrocap1 and electrodes imped-

ance was kept under 10 kO. Linked-ear montage was used for recording. EEG cancelation is

minimized in this montage [34] and this montage has been used in several studies of cognition

[35]. Fifteen minutes of EEG was recorded in each condition. Artifact rejection was performed

in two steps. First, a z-score based algorithm was applied by Neuroguide software (www.

appliedneuroscience.com). This algorithm works based on amplitude and frequency. The

acceptable z-scores were selected between -1.96 and +1.96 (95% accuracy). After automatic

artifact rejection, the average of signal remaining was 11 min and 32 second. In the second

step, remaining signals were visually inspected for artifacts. Since the stationary properties of

EEG signals such as coherence and absolute power are dependent on the signal length [36], we

selected 40 to 50 artifact free signal segments with length of 3 seconds. The selection was per-

formed from the entire signals and the test-retest and split half tests for all EEG channels

remained over 0.9.

Table 1. Group information.

Group Number of participants Gender Age

Range/mean/SD

t-test between groups (Age)

T Sig. (2-tailed)

First study Overestimating 17 Female: 6 20-35/25.14/4.61 -0.713 0.482

Underestimating 25 Female: 11 18-35/26.43/4.93

Second study Overestimating 8 Female: 3 22-37/29.88/5.17 -0.202 0.842

Underestimating 9 Female: 4 22-39/29.22/7.69

https://doi.org/10.1371/journal.pone.0195380.t001
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Offline Fast Fourier transform (FFT) was accomplished by Neuroguide software (www.

appliedneuroscience.com). Neuroguide uses an overlapping window framework for FFT anal-

ysis[37]. The number of FFT point is 256 and the overlapping ratio is 0.5. Using this approach,

EEG absolute power and coherence of Delta (1–4 Hz), and Beta (12–30 Hz) was calculated.

Since the beta is split into refined sub-bands in previous studies [38–40], beta band was

divided into four subbands; Beta1 (12–15 Hz), Beta2 (15.5–18 Hz), Beta3 (18.5–25) and High

Beta (25.5–30 Hz) and the absolute power and coherence were calculated in these subbands.

Coherence and adjacency matrix

Although the nonlinear connectivity indices such as the phase lag has been suggested for

describing the brain connectivity [41] many studies use coherence as a powerful and well-stud-

ied measure that identifies the level of coupling in cortical pathways [34,42,43]. The coherence

between two time series is essentially sensitive to signal phase difference. Maximum coherence

occurs when the phase difference is fixed between two signals [43]. But the coherence would

be zero (or near to zero) if the phase difference between two signals was random during time

[43]. Mathematically coherence is calculated by [34]:

coh
2

ij
ðwÞ ¼

E½CijðwÞ
2
�

E½CiiðwÞ�E½CjjðwÞ�

, where Cij (ω) is the Fourier transform of the cross-correlation coefficients between EEG chan-

nels (channel i and channel j) and Cii (ω) is co-spectrum. Coherence was calculated in 500 ms

overlapping windows in the frequency domain. Then the coherences of all epochs were aver-

aged over time.

An adjacency matrix is composited from connectivity measure (coherence) between all

nodes (electrodes). Each row and column of an adjacency matrix is dedicated to electrodes

and matrix arrays show the measure of connectivity between them (Fig 1D). Since EEG

recording was accomplished by 19 distinct channels, a 19 by 19 weighed adjacency matrix was

formed according to coherence between the EEG electrodes. Then, thresholds were applied

and weighted graphs were changed into binary graphs. In this approach, all of the matrix

arrays with higher values than threshold were replaced by 1 and others arrays were changed to

zero and weighed matrix was changed to binary matrix. Previous studies indicate that since

differences may have occurred in a specific threshold, a wide range of thresholds should be

tested [33,41,44,45]. We investigated the thresholds in three separate clusters; low (0.2 to 0.3),

mid (0.3 to 0.4) and high (0.4 to 0.5) and graph indices were investigated in these thresholds.

Graph theoretical analysis and indices

Several topological indices have been proposed for analyzing the functional connectivity of the

brain network. These measures can show the centrality and importance of nodes in graph,

level of local processing and segregation, and strength of integration in graph. In this study,

four well-studied measures have been considered; graph degree, clustering coefficient, transi-

tivity and global efficiency [33,46].

In graph theory, the degree of a node shows the level of association of node in the graph.

The node degree is defined as the number of edges incident to the node [47]. The average of

graph degree indicates the power of connectivity in the graph and there is a direct relation

between average graph degree and the number of edges in the graph [47]. Mathematically

node’s degree is calculated by summation of all ones in the corresponding row of adjacency

matrix.

Time estimation and beta segregation

PLOS ONE | https://doi.org/10.1371/journal.pone.0195380 April 6, 2018 5 / 16

http://www.appliedneuroscience.com/
http://www.appliedneuroscience.com/
https://doi.org/10.1371/journal.pone.0195380


Fig 1. Graph features at the beta2 (15–18 Hz) and beta3 (18.5–25 Hz) sub-bands in the first study. a) Clustering

coefficient at the beta2 band in terms of thresholds. UE-group exhibits higher value of clustering coefficient than OE

group. Dashed lines are standard errors. b) Clustering coefficient at beta3 band in terms of thresholds. UE-group

exhibits higher value of clustering coefficient than OE group. Dashed lines are standard errors. c) Clusters of

significant differences between two groups at different beta sub-bands based on permutation analysis. There are

significant differences at low thresholds in the beta 2 and beta 3. Significant differences are also observed at middle

thresholds in beta2. d) Visualization of adjacency matrices. Each row and column demonstrates an EEG channel. The

number of each channel has been shown on scalp. Yellow cubes indicate that channel n is connected to channel m.

While blue cubes show unconnected nodes. Different connectivity patterns have been observed in the beta sub-bands.

https://doi.org/10.1371/journal.pone.0195380.g001
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The Clustering coefficient (C) measures the segregation and local connectivity in complex

networks [33,47]. C is associated with the number of triangles divided by the number of all

possible triangles in the matrix [33]. Evidence indicates that in neural networks, brain regions

tend to make segregated circuits and share information at the local level [48]. The C can report

the power of functional brain network for neural information processing in localized circuits

[33]. Similar to C, transitivity is also demonstrated by the number of triangles in the matrix

and can predict the level of segregation in functional brain network [33]. However, there are

differences between transitivity and C [49]. Mathematically, transitivity is equal to 3 times of

number of closed triplets in the graph divided by number of connected triples of vertices in

the graph. Functionally, these two measures, transitivity and clustering, are useful indices for

predicting the strength of local processing in brain network but the results typically differ.

In a binary undirected graph, the shortest path between two nodes is the path that connects

them with minimum edges [47]. The average of shortest paths between all pairs of nodes is the

characteristic shortest path. A graph with high ability to data transfer and integration has small

characteristic shortest path and vice versa [47]. However, a problematic issue arises when we

calculate the characteristic shortest path for a binary matrix. Mathematically, the shortest path

between an unconnected node and other nodes is infinity and then the unconnected nodes in

the graph cause ambiguity in characteristic shortest. To solve this problem, the global effi-

ciency has been introduced. Global efficiency is sum of the inversed shortest path divided by

the number of nodes. Then the unconnected nodes appear as zeros in equation. Since global

efficiency is inversely related to the shortest path, a graph with a high value of global efficiency

exhibits a high value of information integration [33].

All of these indices were calculated for undirected binary matrix by the open source Matlab

toolbox developed by Rubinov & Sporns (2010) at http://www.brain-connectivity-toolbox.net.

Mindfulness task

Body scan instructions were recorded and presented to participants via a loudspeaker. Partici-

pants were asked to perform the instructions. Attention is constantly directed on the body dur-

ing the mindfulness task. Body scan instructions were focused on the assessment of each body

region with a non-judgmental awareness. Instructions flowed and ended with attention on the

body as a whole. Participants were asked to avoid movements. The mindfulness task was per-

formed at eye open condition and participants were asked to keep their eyes open during task.

The total time of body scan task was 15 minutes. Since imagination of movement suppresses

the beta waves in motor cortex [50], the mindfulness task may change the amplitude of beta

and this suppression can be associated with task maintenance.

Statistical and clustering analysis

Absolute powers, coherences and graph indices in delta (1–4 Hz) and four divided beta sub-

bands (i.e., beta1 (12.5–15), beta2 (15.5–18), beta3 (18.5–25) and high beta (25.5–30)) were

compared using nonparametric permutation test [51] between the underestimation and over-

estimation groups in two conditions; rest and mindfulness. Absolute power was compared on

the selected relevant electrodes i.e. C3, C4, O1, O2, Fz, Cz, and Pz. 5000 random shuffles were

done in each permutation test and independent permutation tests were separately performed

for absolute powers and graph indices. Absolute powers in five bands (delta and four beta

bands) and two conditions (rest and mindfulness) were compared between groups. False Dis-

covery Rate (FDR) [52] has been used to correct for multiple comparisons.

Cluster-based nonparametric permutation test [51] was performed for comparing the

graph indices in various thresholds. We compared the graph indices in three separate
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threshold clusters; low, mid and high. In each cluster ten thresholds were compared and clus-

ter-based permutation test was accomplished. The significance level for the p-values was

selected under 0.05. All of the permutation tests were performed using MATLAB 2016b. K-

means approach was used for clustering the data into two groups. We used clustering approach

to find the effectiveness of electrophysiological measures in the separation of groups. The k-

means results may indicate which measures (linear or nonlinear) can make the difference

between the UE and OE groups for an untrained machine. Two dimension k-means was per-

formed and all possible pairs of the significant differed measures were used as inputs. Then the

efficiencies of clustering with various inputs were compared and best accuracy was demon-

strated. Clustering efficiency was calculated by:

E ¼
jP1u � P1O þ jP2u � P2Ojj

100

Where P1u is the probability of underestimating with label 1 and P1O is probability of over-

estimating with label 1 and so on. K-means analysis was accomplished by MATLAB 2016a.

Results

Behavioral results

In Experiment 1, 17 of 42 participants estimated the duration of mindfulness state as longer

(Mean: 19.82, SD = 3.64) than 15 minutes (OE group) and 25 participants as shorter

(Mean = 11.24, SD: 2.09) than 15 minutes (UE group). In Experiment 2, 9 participants esti-

mated time shorter than 15 minutes, while 8 participants overestimated the time. There was

no significant difference in age between the two groups either in the first (t = -0.713 and p- =

0.482) or second (t = 0.202, p- = 0.842) experiment.

FFT results

Nonparametric permutation test and FDR correction indicated that there were no significant

differences between two groups during rest state (control) condition. In the mindfulness con-

dition, there were significant differences in absolute power between the two groups (OE-group

vs. UE-group) at beta3 on Cz (t = 3.13, p = 0.003), Pz (t = 2.98, p = 0.0001), O1 (t = 3.25,

p = 0.0001), O2 (t = 2.64, p = 0.004), C3 (t = 2.36, p = 0.02), C4 (t = 3.12, p = 0.003)and at high

beta on Cz (t = 3.13, p = 0.0001) and C4 (t = 2.64, p = 0.003). For all of these electrodes, OE-

group exhibited a lower value of absolute power than UE-group (Fig 2). This result was par-

tially confirmed in the second (confirmatory) experiment. In the confirmatory experiment,

comparisons were performed only on electrodes with significant differences detected in the

exploratory experiment (Experiment 1). In the beta3 band, OE group exhibited significantly

lower value of the absolute power than UE group at Cz, C4 as observed in Experiment 1. But

Fig 2. Percent differences of absolute power between two groups, in the first study. Average absolute power of OE-

group was lower than the absolute power of UE-group.

https://doi.org/10.1371/journal.pone.0195380.g002
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there were no significant differences at the other electrodes. OE group also exhibited signifi-

cantly lower absolute power of the high beta at Cz electrode. This result was similar to the

result gathered in Experiment 1.

In the exploratory experiment, significant differences in coherence also in the selected path-

ways (Fig 3A) were observed between OE and UE groups. Permutation test indicated that this

difference was restricted to the beta2, beta3 and high beta bands on the tempo-central and

tempo-frontal electrodes (Fig 3B, 3C and 3D). In these regions, the OE group exhibited signifi-

cantly lower coherence than the UE group. However, the results could not be replicated in the

confirmatory experiment.

Graph and brain network analysis results

In the exploratory experiment, permutation test indicated that the OE and the UE groups

exhibited significant differences in clustering coefficient in the beta sub-bands. In the beta2

and beta3 sub-bands, the UE group exhibited a higher clustering coefficient than the OE

group (Fig 1). No significant difference was observed between the two groups in the beta1,

high beta and delta bands. In the other parameters i.e. global efficiency, degree and transitivity,

UE group exhibited higher values than OE group, but these were not significant. In the confir-

matory experiment, striking differences of clustering coefficient were observed at the beta3

band respective to low thresholds.

Clustering results

Best clustering results were achieved at beta3 band (Fig 4). The efficiency of clustering, using

k-means was more reliable when both results of graph theory approach (clustering coefficient)

and FFT (absolute power on C4) were used as inputs (efficiency = 0.82) (Fig 4B). In this condi-

tion, the accuracy of prediction was 77% for the OE group and 64% for the UE group. It means

that when we used these inputs, the participants who were assigned with index 1 belonged to

OE group with possibility of 77% and were members of the UE group with possibility of 23%.

Fig 3. a) Two networks that were investigated in coherence analysis. At the left network, six pairs of electrodes (Fz-T4,

Fz-P4, Cz-T4, Cz-P4, C3-T4 and C3-P4) were evaluated. At the right network six electrode pairs (Fz-T3, Fz-P4, Cz-T3,

Cz-P4, C4-T3 and C4-P4) were evaluated. Dashed line indicates significant differences of coherence between two

groups (after Bonferroni correction). Results showed that the OE group exhibited significantly lower value of

coherence than the UE group at centro-frontal electrodes and right temporal electrode (T4). These differences

occurred at b) beta2, c) beta3 and d) High beta.

https://doi.org/10.1371/journal.pone.0195380.g003
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This accuracy was lower for index 2. Participants who were assigned by index 2 belonged to

the UE group with possibility of 64% and appertained to the OE group with possibility of 36%.

Clustering accuracy and efficiency was reduced for other pairs of inputs in beta3 and high

beta. For example, when absolute powers of Cz and C4 were used as inputs, the efficiency of

clustering reduced to 0.64 (Fig 4A).

Discussion

The current study compared the EEG powers and functional connectivity of EEG network

between two groups with different judgments about fixed multi-minutes (i. e. 15 min) dura-

tion. The results indicate that participants who perceived time as shorter than the physical

time, exhibit higher powers of beta and also higher coherence particularly at central regions.

Furthermore, the underestimating group shows higher clustering coefficient in the beta sub-

bands. We discuss our results in terms of two main aspects. First, FFT analysis as a linear

approach, may clarify the relation between localized brain activity (i.e., basal ganglia (BG)) and

time estimation. Second, non-localized properties of psychological interval timing (as empha-

sized in the intrinsic models) have been addressed and discussed via graph analysis results. At

the end, we discuss the scalar or vector properties of subjective time.

Beta activity, BG-thalamocortical circuits and time estimation

FFT results showed that the OE group and the UE group have exhibited different beta and

high beta absolute power during the mindfulness state. Beta activity at central areas is com-

monly related to sensory-motor rhythms [53]. Functionally, the activity of sensory-motor beta

is negatively associated with activity of the BG-thalamocortical circuits [53,54]. Therefore, ab-

normalities in the beta power are frequently reported in disorders associated with impairment

of the BG-thalamocortical circuits; such as Parkinson’s disease [55], attention deficit and

hyperactivity disorder [56] and also stuttering [57,58]. BG-thalamocortical circuits also play a

critical role in the scalar timing models as an internal clock-accumulator structure. According

to internal clock model, increased activity of striatum causes an increase of clock speed and

leads to overestimation of time [6,7]. Therefore, as an example, underestimation of short dura-

tions has been reported among persons with Parkinson’s disease [59]. Another study suggests

that they exhibit increased beta activity in centro-frontal regions [60] and these symptoms are

also reported in relation to decreased activity of striatum [61]. Moreover, the direct relation-

ship between beta desynchronization and activity of cortico-basal motor structures has been

observed [62].

Fig 4. K-means clustering results of the first experiment. a) Clustering by absolute powers of C4 and Cz at beta3. b)

Clustering by absolute power of C4 and clustering coefficient at beta3 bands. Accuracy of clustering is improved using

both absolute power and graph index (clustering coefficient) as inputs.

https://doi.org/10.1371/journal.pone.0195380.g004
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In this research line, recent findings indicate that there is a significant relationship between

beta power, activity of striatum and estimation of time at several hundreds to multi thousands

of milliseconds [24,25,27,63]. In agreement with previous reports, our results show that UE

group has enhanced beta power compared to the OE group. Since the significant differences

between two groups have been observed during the mindfulness task but not during the rest

state, the differences of beta amplitude between the OE and the UE groups may be considered

in relation to motor imagery and preparation [51] involved in the mindfulness task. Then, we

can assume that mindfulness level or execution of instructions modulates beta activity and also

time perception. It is consistent with Kononowicz & van Rijn study that suggests the motor

preparation and EEG beta synchronization/desynchronization are associated with time pro-

duction [27]. According to internal clock model and regarding to inverse relation between

beta power and activity of BG-thalamocortical circuits [62], we can argue that the UE group,

on average, exhibits lower activity of BG-thalamocortical circuits than the OE group. There-

fore, the subjective time is contracted. This argument is in agreement with the scalar timing

model and suggests the applicability of this model to relatively longer durations (i.e. 15 min).

Non-localized properties of time perception and graph theory approach

Graph theoretical analysis is a nonlinear approach for investigating a highly complicated sys-

tem such as the brain [33]. Graph indices can clarify some nonlinear behavior of the systems

that cannot be accounted by simple linear methods [47]. Clustering coefficient is directly cor-

related with brain segregation [33,46]and there is no linear relation between global brain activ-

ity and level of clustering coefficient. Instead, clustering coefficient may be altered by other

topological properties of complex network (e. g. social network) such as information propaga-

tion and local coupling [64]. Since there is a major debate about linear [65] or nonlinear [13]

nature of perceived time, a graph theoretical approach was used for investigating possible non-

linear differences of brain activity between the OE and UE groups.

Since there were significant differences in clustering coefficient between two groups, we

suggest that nonlinear properties of brain function such as information sharing and brain seg-

regation have been involved in perception of longer durations (i. e. 15 min). Although the clus-

tering coefficient may predict the local connectivity in the brain, there is no linear correlation

between clustering coefficient and activity of brain. Mathematically, the clustering coefficient

is associated with number of triangles in the network [47]. When a node shares data with two

nodes and those nodes are connected together, then a cluster has been made. The ratio of con-

nected neighbors to all of the neighbors is equal to clustering coefficient. Therefore, a node can

share information with many nodes and clustering remains very low. On the other hand, a

node may share information only with two nodes and maximum clustering coefficient can be

achieved (i.e., 1). Then, the nonlinearity of complex brain network segregation cannot be

directly derived from local brain activity and specific neural pathways are required for aug-

menting the clustering coefficient.

We tried to examine a classification approach in order to separate OE than UE group using

linear (FFT) and nonlinear (graph theory) measures. K-means approach was used for unsuper-

vised clustering of participants. Results indicate that beta3 absolute powers (at C4, O1) can be

used as predictors for the UE group labeling. However, in the case of the OE group, there was

no an acceptable prediction. Efficiency of prediction is improved using both beta3 clustering

coefficient and beta3 power at C4 as inputs. Increased prediction accuracy using clustering

coefficient can suggest that time estimation at a long term duration may also correlate with the

segregation at cortico-cortical pathways and non-localized functions. Consistent with this

argument, abnormal beta segregation has been observed in disorders related to abnormal
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timing such as stuttering [58] and Parkinson’s disease [66]. This result is in agreement with

the model which suggests that there is no linear metric of time and time may be perceived via

patterns presented at the network level [13].

Scalar or vector subjective timing

According to results, although activity of BG-thalamocortical pathway (as a dedicated module)

is important in relation to time perception mechanisms, properties of functional activity of

brain network; such as segregation of beta network are significant in perception of time. Func-

tional EEG segregation is closely related to efficiency and speed of information processing in

the cortical brain network [33]. Therefore, vector properties (i.e., information and speed) may

also have a role in human perception of long time duration. Fig 5 briefly indicates that time

may be perceived via scalar or vector systems. Although scalar system justifies overestimation

of time related to hypo-activity of motor beta, other non-predictable features of time percep-

tion may be explained by the vector system. According to the vector subjective timing system,

information processing in the brain network (brain integration, segregation and entropy) may

be altered by activation/deactivation of time module related regions of the brain. We can
assume that perceived durations consist vectors of time in each moment (instead of scalar ticks).
Each vector has a direction and a length. Activity of internal clock (related to linear properties

Fig 5. a) The scalar subjective timing vs. the vector subjective timing. In the scalar system, higher activity of BG-

thalamo-cortical pathways and lower power of motor related beta lead to overestimation of time. However, regarding

the vector system, the estimation of time may involve non-linear brain properties such as brain integration,

segregation and information processing (entropy). b) In the scalar system, numbers of ticks are linearly related to

subjective time. More ticks cause to overestimation of time while underestimation of time is accompanied with less

ticks occurrence. c) According to vector system, subjective time in each moment has two main aspects: length and

direction. Length of each vector may be demonstrated by the number of ticks (generated in BG-thalamo-cortical

pathways). However, direction of vectors may be indicated by nonlinear parameters such as brain integration/

segregation and information processing. When direction of moment vectors is parallel to direction of physical time,

overestimation of time is occurred. While, long length vectors of subjective time may perceive very short when there is

a large angle between physical and subjective time.

https://doi.org/10.1371/journal.pone.0195380.g005
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of time) may change the length of vectors but direction of vectors may be determined by in-

formation processing in the brain. In this framework, long length vectors of subjective time

may be perceived very short when there is a large angle between physical and subjective time

(Fig 5C).
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