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Abstract Three meshless methods, including incompress-

ible smooth particle hydrodynamic (ISPH), moving particle

semi-implicit (MPS) and meshless local Petrov–Galerkin

method based on Rankine source solution (MLPG_R) meth-

ods, are often employed to model nonlinear or violent water

waves and their interaction with marine structures. They are

all based on the projection procedure, in which solving Pois-

son’s equation about pressure at each time step is a major

task. There are three different approaches to solving Pois-

son’s equation, i.e. (1) discretizing Laplacian directly by

approximating the second-order derivatives, (2) transferring

Poisson’s equation into a weak form containing only gradi-

ent of pressure and (3) transferring Poisson’s equation into

a weak form that does not contain any derivatives of func-

tions to be solved. The first approach is often adopted in

ISPH and MPS, while the third one is implemented by the

MLPG_R method. This paper attempts to review the most

popular, though not all, approaches available in literature for

solving the equation.

Keywords Nonlinear water waves · ISPH · MPS ·
MLPG_R · Projection scheme · Particle methods · Meshless

methods · Poisson’s equation

1 Introduction

Marine structures are widely used in ocean transportation,

exploitation and exploration of offshore oil and gas, utiliza-
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tion of marine renewable energy and so on. All these are vul-

nerable to harsh weather and so to very violent waves. Under

action of violent waves, they may suffer from serious dam-

ages. Therefore, it is crucial to be able to model the interaction

between violent waves and structures for designing safe

and cost-effective marine structures. The available numeri-

cal models for strongly nonlinear interactions between water

waves and marine structures are mainly based on solving

either the fully nonlinear potential flow theory (FNPT) or the

Navier–Stokes (NS) equations. For dealing with the prob-

lems associated with violent waves, the NS model should be

employed.

The NS model may be solved by either mesh-based meth-

ods or meshless methods. The former is usually based on

the Eulerian formulation, but the latter on the Lagrangian

formulation. In the meshless methods, the fluid particles

are largely followed and so the methods are also referred

to as particle methods. The mesh-based methods have been

developed for several decades and mainly based on finite

volume and finite different methods (Greaves 2010; Causon

et al. 2010; Chen et al. 2010; Zhu et al. 2013). The mesh-

less (or particle) methods are of relative new development,

but have been recognized as promising alternative meth-

ods in recent years, particularly for modelling violent waves

and their interaction with structures owing to their advan-

tages that meshes are not required and numerical diffusion

associated with convection terms is eliminated in contrast

to mesh-based methods. Extensive review of all the meth-

ods would divert the focus of this paper. A brief overview

for meshless methods is given below, as this paper is con-

cerned only on topics related to them. For more information

about mesh-based methods, the readers are referred to other

publications, such as Causon et al. (2010) and Zhu et al.

(2013).
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1.1 Overview of meshless methods

Many meshless methods have been developed and reported

in literature, such as the moving particle semi-implicit

method (MPS) (e.g. Koshizuka 1996; Gotoh and Sakai 2006;

Khayyer and Gotoh 2010), the smooth particle hydrody-

namic method (SPH) (e.g. Monaghan 1994; Shao et al.

2006; Khayyer et al. 2008; Lind et al. 2012), the finite

point method (e.g. Onate et al. 1996), the element free

Galerkin method (e.g. Belytschko et al. 1994), the diffusion

element method (Nayroles et al. 1992), the method of fun-

damental solution (e.g., Wu et al. 2006), the meshless local

Petrov–Galerkin method based on Rankine source solution

(MLPG_R method) (e.g. Ma 2008) and so on. Among them,

the MPS, SPH and MLPG_R methods have been used to

simulate violent wave problems.

When the meshless methods are applied to model strongly

nonlinear or violent waves, two formulations are employed.

One is based on the assumption that the fluid can be weakly

compressed, while the other just assumes that the fluid is

incompressible. The first one is mainly adopted for SPH, e.g.

Monaghan (1994), Dalrymple and Rogers (2006), Gomez-

gesteira et al. (2010) and so on. More references can be

found in Violeau and Rogers (2016). The second formulation

has been implemented in SPH, MPS and MLPG_R methods.

The SPH based on incompressible assumption is called as

incompressible smooth particle hydrodynamic (ISPH). Most

of the publications that employ the three meshless methods

for modelling incompressible flow are based on the projec-

tion scheme developed by Chorin (1968). One of the main

tasks associated with the projection-based meshless methods

is to find the pressure through solving Poisson’s equation.

Various SPH methods have been reviewed very recently by

Violeau and Rogers (2016). All the aspects of ISPH and MPS

have also been discussed by Gotoh and Khayyer (2016). This

paper tries to only review the approaches of solving Pois-

son’s equation in the meshless methods for incompressible

flow.

1.2 Mathematical formulation of projection-based

meshless methods

For completeness, the mathematical formulation and numer-

ical procedure of projection-based meshless methods are

summarized in this subsection. The incompressible Navier–

Stokes equation (referred to as NS equation) and continuity

equation together with proper boundary conditions including

the free surface one are applied. In the fluid domain,

∇ · �u = 0, (1)

D�u
Dt

= − 1

ρ
∇ p + �g + υ∇2 �u, (2)

where �g is the gravitational acceleration; �u is the fluid veloc-

ity; ρ and υ are the density and the kinematic viscosity of

fluid, respectively; and p is the pressure. On a rigid boundary,

the velocity and pressure satisfy

�n · �u = �n · �U , (3a)

�n · ∇ p = ρ(�n · �g − �n · �̇U + υ �n · ∇2 �u), (3b)

where �n is the unit vector normal to the rigid boundary; �U
and �̇U are the velocity and acceleration of a rigid boundary

which may be a part of the structures. When the structures are

floating and freely responding to waves, �U and �̇U need to be

found by solving floating dynamic equations which will not

be discussed here. On the free surface, a dynamic condition

must be imposed, i.e.

p = 0. (4)

If the multiphase flow is considered, the condition on the

fluid–fluid interface needs to be considered. For more details,

readers may refer to, e.g. Shao (2012) and Hu and Adams

(2007, 2009).

In the projection-based meshless methods, the above equa-

tions are solved using the following time-split procedure

(Chorin 1968). In the procedure, when or after the veloc-

ity, pressure and the location for each particle at nth time

step (t = tn) are known, one uses the following steps to find

the corresponding variables at (n + 1)th time step.

(1) Calculate the intermediate velocity (�u∗) and position

(�r∗) of particles using

�u∗ = �un + �g�t + υ∇2 �un�t, (5)

�r∗ = �rn + �u∗�t, (6)

where �r is the position vector of particles and the super-

script n represents the n-th time step; �t is the increment

of the time step.

(2) Evaluate the pressure pn+1 using

∇2 pn+1 = �
ρn+1 − ρ∗

�t2
+ (1 − �)

ρ

�t
∇.

→∗
u , (7)

where � is a coefficient taking a value between 0 and 1.

ρn+1 and ρ∗ are the fluid densities at (n + 1) time step

and intermediate fluid density, respectively.

(3) Calculate the fluid velocity and update the position of

the particles using

�u∗∗ = −�t

ρ
∇ pn+1, (8a)
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�un+1 = u∗ + �u∗∗ = �u∗ − �t

ρ
∇ pn+1, (8b)

�rn+1 = �rn + (1 − β)�un+1�t + β �un�t, (9)

where β is often taken as 0 (such as in Ma and Zhou

2009) or 0.5 (such as Cummins and Rudman 1999).

(4) Go to (1) for the next time step.

The above procedure is followed by all the three meshless

methods (ISPH, MPS and MLPG_R) discussed here. These

methods are different in several aspects including estimat-

ing velocities and finding solution for pressure. In this paper,

our attention is focused on discussing how different they are

in solving Eq. (7) for pressure. That is because solving the

equation dominates the cost of the computational time, and

also because the accuracy of the solution for pressure deter-

mines the accuracy of the overall solution for wave dynamic

problems.

It is noted that multiple sub-steps in each time step in

the above procedure may be applied as in Hu and Adams

(2007). No matter how many sub-steps are used, the solution

of Poisson’s equation is always concerned in the projection-

based meshless methods. Again, as our focus here is on the

approaches for solving Poisson’s equation, readers who are

interested in multiple sub-steps procedure may refer to rele-

vant publications such as Hu and Adams (2007).

The right hand side of Eq. (7) is the source term of the

Poisson’s equation combining the terms of density invari-

ant and velocity divergence. The appropriate choice of the

� value has been discussed for achieving relatively more

ordered particle distribution and more smoothing pressure

field by, e.g. Ma and Zhou (2009), Gui et al. (2014, 2015). In

addition, attempts are also made by improving the source

term. Khayyer et al. (2009) replaced the source term by

a higher-order source term, while Kondo and Koshizuka

(2011), Khayyer and Gotoh (2011), Khayyer and Gotoh

(2013), Gotoh and Khayyer (2016) and Gotoh et al. (2014)

introduced an error-compensating term (including a high-

order main term and two error-mitigating terms multiplied

by dynamic coefficients). The higher-order source and the

error-compensating terms help to enhance the pressure field

calculation, volume conservation and uniform particle dis-

tributions throughout the simulation that minimizes the

perturbations in particle motions. As the work related to

improving the formulation and evaluation of the source term

has been well covered by the cited papers, further details will

not be given in this paper. This review hereafter focuses on

the ways to deal with the Laplacian on the left hand side of

Eq. (7).

Another issue in solving Eq. (7) is related to the bound-

ary conditions satisfied by pressure on the free surface, rigid

(fixed or moving) wall and arbitrary boundaries (also called

in/outlets) introduced for computation purpose. To numer-

ically implement the boundary condition on the rigid wall,

several approaches have been suggested, including, for exam-

ple, addition of dummy particles (e.g. Lo and Shao 2002;

Gotoh and Sakai 2006) and unified semi-analytical wall

boundary condition (e.g. Leroy et al. 2014). To numerically

implement the boundary condition on the free surface, the

key issue is how to identify the particles on it. There are sev-

eral approaches for doing so, such as detecting if the density

(particle number density) is smaller than a specified value

(e.g. Lo and Shao 2002; Gotoh and Sakai 2006), mixed par-

ticle number density and auxiliary function method (Ma and

Zhou 2009) and an auxiliary condition proposed by Khayyer

et al. (2009). For implementing in/outlet conditions and other

more details about the treatment of boundary conditions, the

readers are referred to the recent review papers by Violeau

and Rogers (2016) and Gotoh and Khayyer (2016).

2 Approaches of ISPH in solving Poisson’s

equation

As far as we know, most publications based on the ISPH

method adopt an approach that is to discretize Poisson’s equa-

tion directly. In such an approach, discretization of Laplacian

is a key. Various different formulations of Laplacian dis-

cretization for the ISPH method are discussed in this section.

Use of the ISPH method appears to start in Cummins and

Rudman (1999), which just gave the results for 2D problems

irrelevant to water waves. In that paper, they employed the

following approach to approximate the Laplacian in Eq. (7),

i.e.

LP-SPH01:

∇ ·
(∇ p

ρ

)

i

=
∑

j

m j

ρ j

4

ρi + ρ j

pi j �r i j .∇wi j
∣

∣�ri j

∣

∣

2 + η2
, (10)

where ri j =
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2, pi j =
pi − p j , m j is the mass of a particle and Wi j = W (�ri j )

is the weight function or kernel function. One of the typical

definitions for the kernel function is

w(|�ri j |) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − 6
( |�ri j |

h

)2

+ 8
( |�ri j |

h

)3

−3
( |�ri j |

h

)4

0 ≤ |�ri j |
h

≤ 1

0
|�ri j |

h
≤ 1

,

(11)

where h is the smoothing length. In the above equation, η is a

small number introduced to keep the denominator non-zero

and often taken as h/10 (e.g. Lo and Shao 2002). LP-SPH01
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may be obtained using the expression for estimating viscous

stresses in Morris et al. (1997).

The above formulation was followed by Lo and Shao

(2002), which considered the water waves propagating near

shore. In their work, the Laplacian in Eq. (7) was approxi-

mated by

LP-SPH 02:

∇ ·
(∇ p

ρ

)

i

=
∑

j

m j

8

(ρi + ρ j)2

pi jri j .∇wi j
∣

∣�ri j

∣

∣

2 + η2
. (12)

This approximation was also employed by many other

researchers, e.g. Shao et al. (2006), Rafiee et al. (2007), Ataie-

Ashtiani and Shobeyri (2008), Ataie-Ashtiani et al. (2008)

and Khayyer et al. (2008). It is noted here that the density

in Eqs. (10) and (12) may be numerically estimated at the

intermediate step even for incompressible fluids (e.g. Lo and

Shao 2002; Gui et al. 2015). In these cases, ρi �= ρ j , though

they may be quite close to each other except on the boundary.

The density may also be specified as the physical density (e.g.

Asai et al. 2012; Lind et al. 2012; Leroy et al. 2014) and thus

should be the same at all particles, i.e. ρi = ρ j . If it is, the

above two expressions become exactly the same. Actually,

if the fact is taken into account, both approximations are

equivalent to

LP-SPH03:

(∇2 p)i = 2

ρ

∑

j

m j

pi j �ri j .∇wi j
∣

∣�ri j

∣

∣

2 + η2
, (13)

which was employed by Lee et al. (2008) and Xu et al. (2009).

This one is the same as that given by Jubelgas et al. (2004)

if η = 0, which was derived using the idea employed by

Brookshaw (1985). In their derivation, Jubelgas et al. (2004)

expanded a function into a Taylor series ignoring all third-

or higher-order terms. Following the same line, Schwaiger

(2008) showed that

∇2 p(ri ) ≈ Ŵβγ p,βγ (�ri ) ≈ 2

∫




(p(�r)

−p(�ri ))
(�ri j)αW , a

∣

∣�ri j

∣

∣

2
d


−2

∫




W ,α p(�ri )d
, (14)

where the subscripts indicate the components of coordinates;

the repeated subscripts such as α denote summation over it;

p,α(�ri ) is the partial derivative of the function with respect

to a coordinate and Ŵβγ =
∫



(�ri j )β(�ri j )γ

(�ri j )α
w,α

|�ri j |2 d
. In

his paper, the equation was given in terms of a general

function. Here, it is written specifically for pressure to be

consistent with other equations. As he indicated, if the

weight function is symmetric and the support domain is

entire, Ŵβγ = δβγ (δβγ = 1 if β = γ ; otherwsie zero) and
∫



W ,α f,α(�ri )d
 = 0, and so Eq. (14) will be the same

as that given by Jubelgas et al. (2004) and its discretized

form will be LP-SPH03 with η = 0. Corresponding to his

formulation, Schwaiger (2008) gave the following discrete

Laplacian:

LP-SPH04:

∇2 p(�ri ) ≈ Ŵ−1ββ

κ

×
{

2
∑

j

m j

p j

(p(�r j ) − p(�ri ))
(�ri j)αW , a

∣

∣�r i j

∣

∣

2
,

− 2p, α(�ri ).

[

∑

j

m j

p j

W, α

]

}

, (15a)

∇2 p(�ri ) ≈
∑

j

m j

p j

(p(�r j ) − p(�ri ))Cαβ W ,β (15b)

Cαβ =
[∫




(�ri j )αW ,β d


]−1

, (15c)

where κ is the number of dimensions, e.g. κ = 2 for 2D cases.

The sizes of Ŵ−1
αβ and Cαβ are both 2 × 2 for 2D cases and 3 ×

3 for 3D cases, and only the trace of Ŵ−1
αβ is required. Com-

pared to others, this formulation requires inverse matrixes

Ŵ−1
ββ and Cαβ at each particles and so may bear extra compu-

tational costs. It was employed for solving thermal diffusion

problem without a free surface in Schwaiger (2008), but

extended and tested by Lind et al. (2012) to solve water wave

problems.

Hu and Adams (2007) suggested the following approxi-

mation by considering particle-averaged spatial derivative:

LP-SPH05:

∇ ·
(∇ p

ρ

)

i

= 2σi

∑

j

1
∣

∣�ri j

∣

∣

∂wi j

∂
∣

∣�ri j

∣

∣

[

1

σ 2
i

+ 1

σ 2
j

]

pi j

ρi + ρ j
,

(16)

where σi = ∑

j Wi j and ρi = miσi . If ρi = ρ j and σi = σ j

with the entire support domain, LP-SPH05 becomes equiv-

alent to LP-SPH03 (with η = 0) as discussed above. That

means that they are largely in the same order of accuracy.

Hu and Adams (2009) suggested another approximation

with double summations:

LP-SPH06:

∇ ·
(∇ p

ρ

)

i

= − 1

σi

∑

j

∇Wi j ·

⎡

⎣

1

mi

∑

k

∇Wik

(

pi

σ 2
i

+ pk

σ 2
k

)

− 1

m j
l
∑

l
∇W jl

(

p j

σ 2
j

+ pl

σ 2
l

)]

. (17)
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In Hu and Adams (2009), LP-SPH06 was only used for the

calculation of intermediate pressure for particle density cor-

rection. For full step velocity updating, they still used the

pressure obtained by LP-SPH05. As far as we know, the use

of LP-SPH06 has not been found in other publications. It is

not clear if it can be employed alone.

Hosseini and Feng (2011) used the following approxima-

tion, which was derived to ensure that the gradient of a linear

function is accurately evaluated as proposed by Oger et al.

(2007).

LP-SPH07:

(∇2 p)i = 2

ρ

∑

j

m j

pi j r i j.C(�ri j ).∇Wi j
∣

∣�ri j

∣

∣

2
(18a)

C(�ri j ) =

⎛

⎝

∑

V j (x j − xi )
∂Wi j

∂x

∑

V j (x j − xi )
∂Wi j

∂y

∑

V j (y j − yi )
∂Wi j

∂x

∑

V j (y j − yi )
∂Wi j

∂y

⎞

⎠

−1

.

(18b)

where V j = m j

ρ j
denotes the volume occupied by a particle.

The expression of Matrix C here, the discrete form of Eq.

(15c), is only for two-dimensional (2D) problems. For three-

dimensional (3D) problems, it will be a 3 × 3 matrix (see, e.g.

Schwaiger 2008). Khayyer et al. (2008) suggested a similar

correction to the kernel gradient and applying it to estimating

internal viscous force calculation to preserve both linear and

angular momentum, but not for solving Poisson’s equation.

Gotoh et al. (2014) derived the following expression using

the divergence of the pressure gradient,

LP-SPH08:

(∇2 p)i =
∑

j �=i

m j pi j

ρ j

(

1
∣

∣�ri j

∣

∣

∂wi j

∂
∣

∣�ri j

∣

∣

− ∂2wi j

∂
∣

∣�ri j

∣

∣

2

)

. (19)

The definition of pi j here is slightly different from that in

Gotoh et al. (2014) and so the equation appears to be different

but it is actually the same.

Apart from these forms described above, another discrete

Laplacian was formed by Chen et al. (1999, 2001). In the

scheme, all the second derivatives are found by solving the

set of following equations:

Bηξ Fξ = Φη (20a)

�η =
∑

j

V j

(

p(�r j ) − p(�ri )
)

W,λγ

−p,α(�ri )
∑

j

V j (�ri j )αW,λγ , (20b)

Bηξ = (1 − δαβ/2)
∑

j

V j (�ri j )α(�ri j )β W,λγ , (20c)

where Fξ = p,αβ = ∂p/∂rα∂rβ with correspondence

between ξ and αβ being 1 ↔ 11, 2 ↔ 22, 3 ↔ 33, 4 ↔ 12,

5 ↔ 23, 6 ↔ 13, as between subscripts η and λγ . After

solving for all the second derivatives of pressure, the dis-

crete Laplacian can be formed by summing up of p,αα . This

Laplacian discretization is named as corrective smoothed

particle method (CSPM) following Schwaiger (2008). Fatehi

and Manzari (2011) derived a new scheme (they called it as

Scheme 4) using error analysis. Careful examination reveals

that their new scheme is almost the same as the CSPM.

The only difference is that Bηξ in their scheme contains a

correction to the leading error caused by approximation to

the gradient. The correction may not play a very significant

role if the gradient used in Eq. (20) is accurately estimated.

Therefore, the scheme by Fatehi and Manzari (2011) may be

considered as one with the similar accuracy as CSPM. As

indicated by Chen et al. (1999), the solution of the equation

theoretically gives the exact value of the second derivatives

for any particle distribution if the pressure is a constant, lin-

ear or parabolic field and if p,α(xi ) equals the exact value of

the first derivatives of the pressure. None of other approxima-

tions (LP-SPH01 to LP-SPH08) have such a good property.

In view of this fact, this formulation can be considered as the

most accurate one among all those discussed above. How-

ever, when this approach is employed for solving Poisson’s

equation about pressure, �η is not evaluable, as it contains

the pressure itself. One must form the matrix and work out

its inversion before it is used for discretising Poisson’s equa-

tion. Clearly, it is the most time-consuming one (Schwaiger

2008), as it requires finding the inversion of two matrixes for

every particle. One is Bηξ , which is 3 × 3 for 2D cases and

6 × 6 for 3D cases, and the other is matrix C , which is 2 × 2

for 2D cases and 3 × 3 for 3D cases. In addition, the property

of matrixes is sensitive to distribution of particles and to the

number of particles falling in the region characterized by the

smoothing length. More discussions about this will be given

in the section about the patch tests.

3 Approaches of MPS in solving Poisson’s equation

Moving-particle semi-implicit (MPS) method was proposed

by Koshizuka et al. (1995) and Koshizuka (1996). In this

method, Poisson’s equation (Eq. 7) is solved also by directly

approximating the Laplacian. In the cited papers, the Lapla-

cian was approximated by

LP-MPS01:

(∇2 p)i = 2κ

λ0σ0

∑

i �= j

(p j − pi )wi j , (21)

where κ is the same as before, σ0 is the initial value of σi , λ0

are defined by
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λ0 =
∫

V

∣

∣�ri j

∣

∣

2
W (�ri j )dV/

∫

V

W (�ri j )dV .

To stabilize the pressure calculation, an improved Laplacian

discretization was proposed by Khayyer and Gotoh (2010).

LP-MPS02:

(∇2 p)i = 1

σ0

∑

i �= j

pi j

(

1
∣

∣�ri j

∣

∣

∂wi j

∂
∣

∣�ri j

∣

∣

− ∂2wi j

∂
∣

∣�ri j

∣

∣

2

)

. (22)

This equation was derived by applying the same principle

as that for LP-SPH08 and is applicable for 2D simulations.

The extension to 3D has also been developed by Khayyer and

Gotoh (2012), in which the first term in the bracket of Eq.

(22) disappears. Here, there is no term of
m j

ρ j
or V j in the sum-

mation like in the SPH formulations. However, if
m j

ρ j
or V j is

constant and taken as their initial value, i.e. 1/σ0, LP-SPH08

becomes exactly the same as LP-MPS02. As the authors of

the cited papers indicated, the LP-MPS02 gave better results

than LP-MPS01. Nevertheless, simple tests show that LP-

MPS02 cannot give an exact value of Laplacian even if the

pressure is a simple function like p = x2 and the particles are

uniformly distributed, while LP-MPS01 can give a right value

in such a situation. This is probably because the normaliza-

tion (λ0) is conducted for LP-MPS01, but not for LP-MPS02

which leads to 0th order consistence of LP-MPS02 as pointed

out by Tamai et al. (2016). If it is the case, it is easily rectified.

An alternative formation was proposed by Ikari et al. (2015)

with an aim to improve LP-MPS02 and given by

LP-MPS03:

l
〈

∇2 p
〉

i
=

∑

j �=i

pi j

{

2
∣

∣�ri j

∣

∣

3

∂wi j

∂
∣

∣�ri j

∣

∣

(C11x2
i j

+ (C12 + C21)xi j yi j + C22 y2
i j )

−
[(

1
∣

∣�ri j

∣

∣

2

∂2wi j

∂
∣

∣�ri j

∣

∣

2
− 1

∣

∣�ri j

∣

∣

3

∂wi j

∂
∣

∣�ri j

∣

∣

)

×
{

C11x2
i j + (C12 + C21)xi j yi j + C22 y2

i j

}

+ 1
∣

∣�ri j

∣

∣

∂wi j

∂
∣

∣�ri j

∣

∣

(C11 + C22) − xi j
∣

∣�ri j

∣

∣

3

∂wi j

∂
∣

∣�ri j

∣

∣

×(C11xi j + C21 yi j )

+ 1
∣

∣�ri j

∣

∣

3

∂wi j

∂
∣

∣�ri j

∣

∣

(C12xi j + C22 yi j )

]}

, (23a)

where

C =

⎛

⎜

⎜

⎝

− 1
σ0

∑

j �=i

∂wi j

∂|�ri j |
x2

i j

|�ri j | − 1
σ0

∑

j �=i

∂wi j

∂|�ri j |
xi j yi j

|�ri j |

− 1
σ0

∑

j �=i

∂wi j

∂|�ri j |
xi j yi j

|�ri j | − 1
σ0

∑

j �=i

∂wi j

∂|�ri j |
y2

i j

|�ri j |

⎞

⎟

⎟

⎠

−1

(23b)

The expression of C in Eq. (23b) is written only for 2D

problems, though it can be straightforwardly extended to 3D

problems. Theoretically, LP-MPS03 should be reduced to

LP-MPS02 if C is a unit matrix, but actually it is not. The

reason is perhaps attributed to the approximation adopted

when deriving the LP-MPS03. Interested readers can find

more details about this from the cited papers. Very recently,

Tamai et al. (2016) proposed another formation given by

LP-MPS04:

∇2 p(�ri ) ≈ tr

⎧

⎨

⎩

2M−1
∑

j

(

p(�r j ) − p(�ri )

− p(�ri j )α p,α(�ri )
)

wi j qi j

⎫

⎬

⎭

, (24)

where qi j is a vector of order 3 for 2D cases and order 6 for 3D

cases, requiring inversion of another matrix associated with

first-order derivatives. M is a matrix based on qi j , also with

a size of 3 × 3 for 2D cases and 6 × 6 for 3D cases. For the

detailed definition of the matrixes, readers are referred to the

cited paper. The derivation of the formulation is analogous

to CSPM (Eq. 20) and Fatehi and Manzari (2011). However,

the content of matrix M is different from Eq. (20c), in that a

term associated with the first derivative is involved in M,like

in Fatehi and Manzari (2011).

Apart from these, Tamai and Koshizuka (2014) proposed

a scheme based on a least square method, but Tamai et al.

(2016) pointed out that this scheme needed inversion of a

larger size matrix (an order of 5 for 2D cases and 9 for 3D

cases) and also a larger support domain (or smoothing length)

to keep the matrix invertible. More discussions can be found

in the cited papers.

4 Patch tests on different discrete Laplacians

To investigate the behaviours of different forms of Lapla-

cian discretization, a few papers carried out patch tests. In

some patch tests, a Laplacian discretization is applied to esti-

mate the value of Laplacian for a specified function, which

is defined on a specified domain, giving the exact evaluation

of the error. This section will summarize these tests available

in published papers.

Schwaiger (2008) investigated several discrete Lapla-

cians, including CSPM, LP-SPH04 and LP-SPH03 with

η = 0 (unless the ri j ∼ 0, a small value of η in LP-SPH03

does not play a significant role). He considered functions of

xm + ym and xm ym defined on a 2D domain of 2 < x < 3

and 2 < y < 3 with m = 2, 3, 4, 5 and 6, and calculated the

value of discrete Laplacians, respectively. Two particle con-

figurations were considered, one with uniform distribution

123



J. Ocean Eng. Mar. Energy (2016) 2:279–299 285

at a distance S between particles and the other with random

perturbation of |ǫ| ≤ 0.4S (i.e. the distance between particles

is determined by S + ǫ) in x- and y-directions on the basis

of uniform distribution. They found that for uniform particle

distribution, the results of LP-SPH04 and CSPM were very

similar at the interior particles away from boundaries with the

error at a level of the machine error. LP-SPH03 can also give

quite a good estimation at these particles, though its error

is larger. However, at the particles close to boundaries, all

approximations can produce large errors, though the relative

errors of LP-SPH04 and CSPM are smaller in most cases.

Even for them, the relative error close to the boundaries can

reach the level of 70 % as observed in Fig. 1 of Schwaiger

(2008).

For irregular or disorderly particle distributions, the

behaviour of discrete Laplacians also depend on how to

choose the smoothing length. Schwaiger (2008) studied two

options, one is h = 1.2S and the other is h = 0.268
√

S.

Based on the relative errors in the region 2.25 < x < 2.75

and 2.25 < y < 2.75 without accounting for the particles

near the boundaries, they found that for h = 1.2S, both LP-

SPH04 and CSPM did not show a fully convergent behaviour,

but remained at a fairly constant relative error,reducing the

average particle distance. They also found that LP-SPH03

became divergent, i.e. the relative error increasing with

reducing the particle distance. CSPM should give converged

results even for irregular particle distribution. The reason it

did not do so is perhaps because there were no sufficient

number of particles within the region of size h = 1.2S, due

to irregular shifting of particle positions, yielding that the

property of matrixes involved in the CSPM became worse,

and so leading to non-convergent results. For h = 0.268
√

S,

they showed in Fig. 5 of their paper that all approxima-

tions exhibited convergent behaviour and that LP-SPH04 and

CSPM results converged much faster, with the rate being near

the second order, while LP-SPH03 results converged much

slower with its convergent rate being less than first order. The

reason for LP-SPH04 and CSPM results to be in second-order

convergent rate in this case is perhaps because 0.268
√

S is

much larger than 1.2S, and so there were always sufficient

number of particles involved in the cases studied. Schwaiger

(2008) mentioned that the smoothing length h was often set

proportional to S, but the divergence behaviour correspond-

ing to the case is perhaps troubling.

Lind et al. (2012) carried out similar investigations by

comparing LP-SPH03 with LP-SPH04 for the functions of

xm + ym with m = 1, 2 and 3 defined on the same domain

as that by Schwaiger (2008). They just confirmed that the

relative error of LP-SPH04 could reach 70 %, while LP-

SPH03 yielded an error of 4000 % on the boundary. At the

row next to the boundary, the relative error of LP-SPH04

reduced to 4 %, while that of LP-SPH03 remained to be

500 %.

Lind et al. (2012) also carried out investigations by solv-

ing the equation of (∇2 p)i = 1 for 1D problem with the

boundary conditions of dp/dy = 10 at y = 0 and p = 1 at

y = 1 using LP-SPH04. For this purpose, they employed

both uniform and non-uniform particle configurations. The

latter was produced by specifying different small random

perturbations of (±0.1 ∼ ±0.5)S to the particle distance

for uniform distribution. They particularly indicated that the

relative error of the solution became larger with increased

random perturbation: 1.5 % corresponding to (±0.1)S, but

17 % to (±0.5)S. They also demonstrated that the LP-SPH04

may lead to results with a convergent rate of 1.2–1.3 (less than

2 as shown for h = 0.268
√

S by Schwaiger 2008) with the

particle shifting scheme to maintain the particle orderliness.

Zheng et al. (2014) performed similar tests, but used the

function of f (x,y) = cos(4πx + 8πy) defined in the region of

2 ≤ x ≤ 3 and 2 ≤ y ≤ 3. This function is closer to the real

pressure in water waves than xm+ym and xm ym . The discrete

Laplacian they considered also included the LP-SPH03 and

LP-SPH04. In their tests, the domain was first divided into

small squared elements with �x = �y = S. The particles

were then redistributed according to �x ′ and �y′ determined

by S[1+k(Rn−0.5)], where Rn is a random number between

0 and 1.0 and different for �x ′ and �y′, and k is a constant.

Clearly, k = 0 leads to regular distribution of particles. k > 0

makes the distribution of particles irregular or disorderly. As

k increases, the disorderliness increases. The accuracy of the

Laplacian approximations is quantified in a similar way to

that in Schwaiger (2008), by evaluating the average relative

errors

Er =

√

√

√

√

N
∑

i=1

(∇2 fi,c − ∇2 fi,a

∇2 fi,a,m

)2

Vi , (25a)

where ∇2 fi,a is the analytical value of Laplacian with

∇2 fi,a,m being its magnitude, e.g. ∇2 fi,a,m = 80π2, for

f (x, y) = cos(4 π x + 8 π y); and ∇2 fi,c is the values of

discrete Laplacian. When estimating the error, only the par-

ticles within the region of 2.2 ≤ x ≤ 2.8 and 2.2 ≤ y ≤ 2.8

are considered as in Schwaiger (2008). The accuracy of the

Laplacian approximations is also quantified by estimating

their maximum relative errors given as

Ermax = max

(∣

∣

∣

∣

∇2 fi,c − ∇2 fi,a

∇2 fi,a,m

∣

∣

∣

∣

)

, i = 1, 2, 3 . . . N .

(25b)

In their tests, S = 0.1, 0.05, 0.02, 0.0125, 0.01, 0.08 and

k = 0, 0.2, 0.4, 0.8, 1.0, 1.2 were considered. Some of their

results are reproduced in Figs. 1, 2, and 3. Figure 1a presents

the average relative errors for different values of S with a

value of k being fixed to be 0.8, i.e. with the random shift
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Fig. 1 Variation of errors with changes of particle distances (originally presented in Zheng et al. 2014): a mean error; b maximum error

Fig. 2 Variation of errors with changes of randomness (originally presented in Zheng et al. 2014): a mean error; b maximum error

up to ±0.4S, the same as that in Schwaiger (2008). From the

figure, one can see that the average error of LP-SPH04 is con-

sistently reduced with reduction of S. This trend is similar

to the results of Schwaiger (2008) for a function of xm + ym

obtained using h = 0.268
√

S, but different from those of

Schwaiger (2008) obtained using h = 1.2S which is shown

to be constant with the reduction of S in their papers. The rea-

son is perhaps because the smooth length used in Zheng et al.

(2014) was larger, though it was still proportional to S. The

average errors of LP-SPH03 can increase with the reduction

of S, which is a divergent behaviour. Figure 1b demonstrates

that the maximum error of LP-SPH04 consistently decreases

until S = 0.0125 or Log(S) ≈ −1.9, but increase with

increasing the resolution of the particles after that. In addi-

tion, the smallest value of the error is Log(Ermax) > −0.6,

corresponding to Ermax = 25 %, which is considerably larger

than the average errors for the same case (Fig. 1a) and may

be considered to be significant as the error occurs inside the

domain. Again, the maximum error of LP-SPH03 shows a

divergent behaviour when S < 0.05 (Log(S) < −1.3). It

is noted that overall, the accuracy of numerical methods are

controlled by the maximum error, and not the average error.

Figure 2 plots the average and maximum errors for dif-

ferent values of k with S = 0.01. One can see from the

figures that the errors of both approximations (LP-SPH03

and LP-SPH04) increase with the increase of k values, i.e.

with particle being more disorderly, which is consistent with

observation of Lind et al. (2012). Furthermore, the maximum

error inside the domain can become very large, for example,

Log(Ermax) > −0.4, corresponding to Ermax > 40 %, at

k > 0.8 even for LP-SPH04.

To demonstrate if there is a significant number of parti-

cles with a large error, Zheng et al. (2014) plotted a figure

similar to Fig. 3. In this figure, the horizontal axis shows

the different ranges of relative error, e.g. [20, 30 %], while

the vertical axis shows the number of particles whose error
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Fig. 3 The number of particles with an error larger than a certain values

for S = 0.01 and k = 1.2 (originally presented in Zheng et al. 2014)

lies in a range. For example, in the range of [20, 30 %],

there are about 230 particles for the LP-SPH04. The relative

error at each individual particle used in this figure is esti-

mated by Eri =
∣

∣

∣

∇2 fi,c−∇2 fi,a

∇2 fi,a,m

∣

∣

∣ (i = 1, 2, 3 . . . N ). This

figure demonstrates that a quite large relative error (>20 %)

can happen at a considerable number of particles for the

approximations even when they are applied to computing the

Laplacian of the quite simple function, though the number

for the LP-SPH04 is much smaller than for the LP-SPH03.

In most of the above tests (except for some cases in

Schwaiger 2008), the value of S/h is fixed with the smooth-

ing length varying and sometimes with different randomness.

Quinlan et al. (2006) discussed the theoretical convergence

of approximating the gradient of a function used in SPH.

They showed that the error caused by numerical approxima-

tions to the gradient did not only depend on the smoothing

length and randomness (non-uniformity), but also on the

ratio S/h. Specifically speaking, the error increases with the

larger randomness and can be proportional to 1/h if S/h is

not small enough, which is consistent with that observed in

the above results. When S/h is small enough, the conver-

gent behaviour of the approximation to the gradient can be

improved. Graham and Hughes (2007) particularly investi-

gated the behaviour of LP-SPH03 with η = 0 by varying the

value of S/h. They studied the pressure-driven flow between

parallel plates with a constant pressure gradient with the dif-

fusion term estimated by LP-SPH03 (η = 0) for three values

(1, 1/1.25 and 1/1.5) of S/h. They showed that the method

was not convergent in several cases they studied and that

random particle configurations could have a dramatic effect

on the accuracy of the SPH approximations. More specially,

the results are divergent if their random factor is larger than

0.25, and their best results are these obtained by using S/h =

1/1.5 with the particles fixed, among which the error reduces

at a rate less than first order when their random factor is rela-

tively small. Fatehi and Manzari (2011) also carried out tests

by varying S/h from 1/1.5 to 1/3.5 on a scheme similar to

LP-SPH03 with η = 0 and their new scheme which is similar

to CSPM (discussed above) by solving a thermal diffusivity

problem defined on a unit square 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

which has a similar equation to the problem with the zero

pressure gradient considered by Graham and Hughes (2007)

. In their tests, regular and irregular particle distributions were

considered, and the relative errors of numerical results to the

analytical ones at a time near steady state were presented

in their paper. The random perturbation they employed was

|ǫ| ≤ 0.05S or |ǫ| ≤ 0.1S, much less than |ǫ| ≤ 0.4S used

by Schwaiger (2008). Their results showed that the scheme

LP-SPH03 with η = 0 had a convergent rate of first order at

the best, and that their new scheme similar to CSPM had a

convergent rate of second order. However, they indicated that

the scheme did not work when smoothing length was 1.5S,

consistent with the analysis of Quinlan et al. (2006). This is

perhaps because the number of neighbouring particle is not

sufficient, which may make the matrixes involved in CSPM

invertible. It is not sure if the convergent rate would maintain

when the random perturbation is larger.

Gotoh et al. (2014) presented some convergent test results

on LP-SPH08. For this purpose, the approximation was

used together with their error-compensation term to sim-

ulate a pressure field caused by a modified gravitational

acceleration. Their results showed that for irregular parti-

cle distributions (the initial distribution randomly altered and

half of the fluid particles displaced by ±0.02S), the normal-

ized root mean square error reduced with decrease of the

initial particle distance, a convergent behaviour. According

to the cited paper, the errors are 0.108, 0.068 and 0.065 corre-

sponding to S = 0.004, 0.003 and 0.002, respectively, which

gives an average convergent rate at about 0.7, though it is

about 1.6 from 0.004 to 0.003.

Ikari et al. (2015) tested the discrete Laplacians (LP-

MPS02 and LP-MPS03) for the MPS method. Their results

are summarized here. The first case they presented was about

the computation of a pressure field due to a sinusoidal dis-

turbance to gravitational acceleration. The particles were

randomly shifted by ±0.05S on the basis of uniform dis-

tribution. As they indicated, the results of LP-MPS03 were

better than those of LP-MPS02. They also showed that there

were some spurious fluctuations in the pressure time histories

from LP-MPS02 on reducing the particle distance. Their sec-

ond case was similar to their first case except for a difference

that the sinusoidal disturbance was multiplied by an expo-

nential growing factor. The results for this case also showed

the outperformance of LP-MPS03 compared to LP-MPS02.

They pointed out that the clear convergence of results from

LP-MPS03 was not observed in terms of root mean square
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error of numerical results relative to the analytical solution

for the case. The third case they investigated was about a

2D diffusion problem on a square domain. For this case,

the performances of both LP-MPS02 and LP-MPS03 were

satisfactory, though LP-MPS03 was slightly better. The con-

vergent trend was not, however, exhibited. For example, the

root mean square error of LP-MPS03 is 19.2850, 30.8089

and 24.2292 corresponding to the mean particle distance of

10, 5 and 2.5 mm. The convergent property of LP-MPS02

with a higher-order source term on the right hand side of

Eq. (7) was also examined by Khayyer and Gotoh (2012),

showing an improved and more stabilized (without fast fluc-

tuation) pressure for the similar case (but in 3D here) to that

in Gotoh et al. (2014) discussed above. In this test, the ini-

tial distribution of particles is randomly altered and half of

the fluid particles are displaced by ∓0.05S, similar to that

in Ikari et al. (2015). The results demonstrated that the nor-

malized root mean square error reduced with decrease of the

initial particle distance. In other words, convergent behaviour

was observed. The specific information is that the errors are

0.241, 0.228 and 0.192 corresponding to S = 0.012, 0.010

and 0.008, respectively. The average convergent rate is near

0.8.

Tamai et al. (2016) carried out tests using the discrete

Laplacians to estimate the values of Laplacian for a given

function on a square domain 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

This is similar to the method used by Schwaiger (2008) and

Zheng et al. (2014) discussed above, but Tamai et al. (2016)

used a sum of four exponential functions. In their tests, the

random distribution of particles was also achieved by ran-

domly shifting the particle position on the basis of uniform

distribution. The random disturbance was given by a normal

distribution with zero expectation and standard deviation of

0.1. The degree of randomness was higher than Gotoh et al.

(2014) and Khayyer and Gotoh (2012), in the same level as in

Fatehi and Manzari (2011), but not as large as in Schwaiger

(2008). The smoothing length they used was not less than

2.7S, quite large compared to the tests mentioned above. The

results of the tests in Tamai et al. (2016) indicated that (a) the

maximum errors of LP-SPH03, LP-MPS01 and LP-MPS02

grew with reduction of mean particle distance (S), i.e. show-

ing a divergent behaviour, similar to Fig. 1b given by Zheng

et al. (2014) and (b) the convergent rate of LP- MPS04 is

about 2, which is similar to the observation on CSPM by

Schwaiger (2008) and Fatehi and Manzari (2011).

In summary, the above tests are clearly not extensive to

cover all Laplacian approximations, but they indeed cover

some best approaches available so far in literature. Their

main features and typical behaviours observed in the tests

described above are outlined in Table 1. In the table, the

approximations are classified into three types for the conve-

nience of discussion here. Type 1 includes those without the

need of matrix inversion, such as LP-SPH03, Type 2 includes

those with one matrix inversion, while Type 3 refers to those

with the need of two matrix inversions. According to the

results, one may find that the schemes can be improved in

the following aspects.

• The discretization of Laplacians can be a notable issue

at particles near a boundary, especially for disordered

particle distributions, such as water surface, without addi-

tional appropriate treatment. This may not be a big issue

in some applications where the solution near the bound-

ary is not mainly concerned, but would be a critical issue

for modelling water waves and their interaction with

structures in marine or coastal engineering, in which

the accuracy of pressure near the water and body sur-

face is important. The corrected Laplacian operator in

integral formulation (Souto-Iglesias 2013) improves the

Laplacian evaluation near the boundary and gives con-

vergent solutions of Poisson’s equation with boundary

conditions which is also applied to evaluate the curva-

ture in Khayyer et al. (2014). This may suggest that the

discretization schemes of Laplacians discussed above

should be employed together with the correction to

improve their behaviour near boundaries.

• The error of discrete Laplacians can become larger when

the degree of particle disorderliness is higher or results

converge slower even inside computational domains. In

the cases for violent water waves, the particle distribu-

tion always becomes highly disordered even though they

are uniformly and regularly located initially. More effort

may be required to make them less sensitive to particle

disorderliness.

• It is observed that Type 1 Laplacian approximations may

not converge for a high degree of particle distribution ran-

domness (or disorderliness), but they may converge at a

rate less than first order for a low degree of particle distri-

bution randomness (or disorderliness). That means that

the results obtained from approximations may become

worse with reduction of particle distance or increase of

the number of particles used when particle distribution

randomness level is high. Type 2 may have similar prob-

lem, though it may be more accurate for the same number

of particles.

• Type 3 has a convergent rate of 2nd order if the random

level of particle distribution is not very high, but the rate

may become lower with the increase of the random level.

The computation costs of the type are high compared with

others. In addition, the number of neighbouring particles

must always be high enough to ensure the matrixes to

be invertible. This is not necessarily guaranteed when

modelling violent water waves as the configuration of

particles can dramatically and dynamically vary during

simulation, which is not a priori predictable.
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Table 1 Summary of the main features of different discrete Laplacians

Scheme Type Number of matrix inversion Typical behaviours observed in tests described above

LP-SPH01 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH02 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH03 1 NO
Schwaiger (2008), Zheng et al. (2014) and Tamai

et al. (2016) showed it is divergent for severe

randomness of particle distribution if smoothing

length is proportional to the particle distance;

Schwaiger (2008) and Lind et al. (2012) showed a

very large error near the boundaries; Schwaiger

(2008) showed it converged at a rate less than first

order when using a smooth length proportional to

the square root of the particle distance; Fatehi and

Manzari (2011) and Graham and Hughes (2007)

also showed it converged at a rate less than first

order when the randomness of the particle

distribution is not very severe

LP-SPH04 3 2, their sizes are 2 × 2 for 2D cases

and 3 × 3 for 3D cases

Error near the boundary can be large if the random

level of particle distribution is high; second-order

convergent rate is observed by Schwaiger (2008)

but can be much less than second order shown by

Lind et al. (2012), and depending on the

randomness of particle distribution (Zheng et al.

2014). The error inside the domain can also be

large when the level of the randomness of particle

distribution is very high (Zheng et al. 2014)

LP-SPH05 1 NO For incompressible flow, similar to LP-SPH03

LP-SPH06 1 NO but double summation Not popular; patch tests not available

LP-SPH07 2 1, its size is 2 × 2 for 2D cases and

3 × 3 for 3D cases

Patch tests not available

LP-SPH08 1 NO Convergent at a rate less than first order for a lower

level of irregularity of particle distribution shown

by Gotoh et al. (2014)

CSPM 3 2, one with a larger size of 3 × 3

for 2D cases and 6 × 6 for 3D

cases

Error near boundary can be large if random level of

particle distribution is high; computational cost is

high, though second-order convergent rate is

observed in Schwaiger (2008)

LP-MPS01 1 NO Not convergent for a higher level of irregularity of

particle distribution shown by Tamai et al. (2016)

LP-MPS02 1 NO Convergent at a rate less than first order for a lower

level of irregularity of particle distribution shown

by Khayyer and Gotoh (2012); not convergent for a

higher level of irregularity of particle distribution

shown by Tamai et al. (2016)

LP-MPS03 2 1, its size is 2 × 2 for 2D cases and

3 × 3 for 3D cases

Clear convergent behaviour is not observed for

random particle distribution, though its results are

better than LP-MPS02 in Ikari et al. (2015)

LP-MPS04 3 2, one with a larger size of 3 × 3

for 2D cases and 6 × 6 for 3D

cases

Computational cost is high; though second-order

convergent rate is observed shown by Tamai et al.

(2016). As it is just suggested recently, its

behaviours need to be confirmed by more

applications
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These issues associated with larger errors and divergent

behaviours observed in the tests on Type 1 and 2 Laplacian

approximations as indicated in Table 1 do not mean that the

methods using the approximations could not give acceptable

results. Actually, a large body of literature has provided abun-

dant evidence that the ISPH (e.g. Lo and Shao 2002; Lind

et al. 2012) and MPS (e.g. Khayyer and Gotoh 2010, 2011,

2012, 2013) based on the schemes are successful in many

applications. These issues mainly imply that researchers need

to make much effort in determining the right number of par-

ticles to be used to achieve acceptable results. If their number

of particles is not right, their solutions bear a large error. It

may also imply that to achieve results with a specified accu-

racy requires a large number of particles.

These results demonstrate that although a lot of effort

has been undertaken to develop better approximations to the

Laplacian discretization, it still needs to be improved, in par-

ticular for modelling violent water waves where the water

particles can become severely disordered. To improve the

accuracy of computation, one may adjust the distribution of

particles as done by Xu et al. (2009) to reduce the disorder-

liness of particles. The other way to circumvent the issues

is by avoiding the direct discretization of Laplacian. This

approach will be discussed in the next section.

5 Approaches of MLPG_R in solving Poisson’s

equation

Bonet and Kulasegaram (2000, 2002) adopted a varia-

tional formulation to solve Possion’s equation for their ISPH

method. In their basic formulation, only the gradient was

involved, and second-order derivatives were avoided entirely.

The discrete gradient in the formulation was involved and so

the inversion of a matrix had to be performed for each of

all particles, similar to that in LP-SPH07 and LP-MPS03.

They, however, showed that the analytical gradient of a lin-

ear function with a constant gradient could not be guaranteed

to be correctly evaluated even with a correction in their basic

variational formulation. They then introduced an integration

correction factor that is actually a vector. The factor was

indeed effective to overcome the problem associated with

basic variational formulations. However, to estimate the fac-

tor, they needed iterations which involve summation and

multiplication of matrixes at each of all particles, requiring

significant extra computational costs. Another problem with

their variational formulation arises also from evaluating func-

tion gradients, so-called ‘spurious modes’, i.e. the nonzero

gradient of a function being perhaps estimated numerically as

zero, which exists even with the use of the integration correc-

tion factor. To eliminate the spurious modes, they introduced

a least-square stabilization method by adding a stabiliza-

tion potential to the variational formulation. The stabilization

Integration 

domain at node I

Support domain 

at node J

JI
rJ

Fig. 4 Illustration of integration and support domains for MLPG_R

method

procedure requires the evaluation of the Laplacian (i.e. the

second-order derivatives) of the solution function. As they

discussed, a special correction had to be applied to ensure

that the evaluation of Laplacian was correct for linear or

quadratic functions. One can see that the use of the varia-

tional formulation does not only require extra computational

costs, but also actually still require dealing with the Lapla-

cian. That would be perhaps the reason why it has not become

popular in the SPH community.

Ma (2005a) started to employ the MLPG method to solve

water wave problems. In this method, the Poisson’s equation

(Eq. 7 with � = 0 without loss of generality in this paper)

is first integrated over a circle in 2D (Fig. 4) and a sphere in

3D cases to give

∫


I

[

∇2 p − ρ

�t
∇ · �u(∗)

]

ϕd
 = 0, (26)

where 
I is the integration domain centred at node I and ϕ is

a test function, which can be arbitrarily chosen. Ma (2005a)

employed a Heaviside step function as the test function and

arrived at MLPGR-01:

∫

∂
I

�n · ∇ pdS = ρ

�t

∫

∂
I

�n · �u∗dS, (27)

where ∂
I is the boundary of 
I and �n is the normal vec-

tor of ∂
I , pointing out of the integration domain. In this

formulation, the pressure and its gradient are estimated by

p(�x) ≈
N

∑

J=1

�J (�x) p̂J and ∇ p(�x) ≈
N

∑

J=1

∇�J (�x) p̂J , (28)

where �J (�x) is a shape function formulated by moving the

least square (MLS) method and using a local weight func-

tion defined on a support domain (Fig. 4), similar to the one

used in SPH or MPS, e.g. Eq. (11); p̂J is the presentative

pressure, which may not be equal to the real pressure at the
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point concerned. This formulation is similar to that of Bonet

and Kulasegaram (2000) in the sense that only gradients, no

second-order derivatives, are directly involved.

This formulation was soon enhanced into the MLPG

method based on rankine source solution (shortened as

MLPG_R method) by Ma (2005b). In the MLPG_R method,

the solution of the Rankine source is taken as the test func-

tion, i.e. the function ϕ satisfies ∇2ϕ = 0 in 
I except for the

centre and ϕ = 0 on ∂
I with a radius of RI . The expression

of the solution for Rankine source is proposed to be

ϕ = 1

4π
(1 − RI /r)for 3D cases (29a)

ϕ = 1

2π
ln(r/RI )for 2D cases, (29b)

where r is the distance between the concerned point and the

centre of 
I . Based on this test function, the integration of

Eq. (26) can be changed into

MLPGR-02:

∫

∂
I

�n · (p∇ϕ)dS − Rκ−2
I pI =

∫


I

ρ

�t
�u(∗) · ∇ϕ d
, (30)

where κ is the number of dimensions, κ = 2 for 2D cases

and κ = 3 for 3D cases, as defined in previous sections.

The MLPGR-02 formulation is similar to MLPGR-01 in the

sense that only the boundary integral on the left hand side is

involved. However, it is distinct from the latter and also from

the variational formulation of Bonet and Kulasegaram (2000)

in the sense that it is the pressure, rather than pressure gradi-

ent, that is dealt with in the MLPGR-02. Therefore, there are

no issues associated with evaluating the pressure gradient,

such as integration correction factor and spurious modes as

discussed by Bonet and Kulasegaram (2000). Apart from this,

there is of course no issue related to Laplacian discretization.

It is noted that the right hand side of MLPGR-02 is a vol-

umetric integration, i.e. the integration domain is a sphere in

3D and a circle in 2D cases, rather than a surface integra-

tion as in MLPGR-01. Use of normal numerical integration

techniques, like Gaussian quadrature, may need a significant

amount of computational time for estimating the term. To

overcome this problem, Ma (2005b) and Zhou et al. (2010)

developed semi-analytical techniques for 2D and 3D cases.

With use of these techniques, the computational costs for

evaluating the right hand term in MLPGR-02 is similar to

that for evaluating the right hand term in MLPGR-01.

It is also noted that a special interpolation technique was

developed by Ma (2008) for discretizing pressure and veloc-

ity in Eq. (30). For completeness, it is given below in terms

of the pressure.

p(�r0) =
N

∑

J=1

�J (�r0; �rI )p(�rJ ), (31a)

�J (�r0; �rI ) = w(|�rJ − �r0|)
∑N

J w(|�rJ − �r0|)
− (1 − δI J )B0,J (�rI )

+ δI J

N
∑

J �=I

B0,J (�rI ), (31b)

B0,J (�rI ) = �R0 · �AI J , (31c)

�AI J =
[

n I,y BI J,x − n̄ I,xy BI J,y

n I,x n I,y − n̄2
I,xy

,

= n I,x BI J,y − n̄ I,xy BI J,x

n I,x n I,y − n̄2
I,xy

]T

, (31d)

�R0 =
∑N

J (�rJ − �r0)w(|�rJ − �r0|)
∑N

J w(|�rJ − �r0|)
, (31e)

BI J,xm = (�rJ,xm − �rI,xm )

|�rJ − �rI |2
w(|�rJ − �rI , |) (31f)

n I,xm =
N

∑

J=1,J �=I

(�rJ,xm − �rI,xm )2

|�rJ − �rI |2
W (|�rJ − �rI |)

(m = 1 or 2), (31g)

n̄ I,xy =
N

∑

J=1,J �=I

(�rJ,xm − �rI,xm )(�rJ,xk
− �rI,xk

)

|�rJ − �r0|2
w(|�rJ − �rI |)

(m = 1 or 2, k = 1 or 2, m �= k), (31h)

Fig. 5 Variation of mean error with changes of particle distance
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δI J =
{

1 I = J

0 I �= J
, (31i)

where �rI,xm is the component of �r in xm (m = 1, 2, or 3)

direction. The set of equations is obtained by replacing Eq.

(12) in Ma (2008) for estimating the gradient with Eq. (15) for

2D cases in that paper. It can be straightforwardly extended

to 3D cases using Eq. (15) for 3D cases in Ma (2008). When

working out the gradient, one needs inversion of a matrix

which has a size of 2 × 2 for 2D cases and 3 × 3 for 3D

cases similar to that for Type 2 discrete Laplacians. In other

words, the MLPG_R scheme based on Eq. (31) in this paper

needs about the same level of computational costs of that

based on Type 2 discrete Laplacians, but the inversion of

L

d

Fig. 6 Sketch of sloshing tank (d = 0.5 m, L = 2d , a0 = 0.001 d)

such a higher order matrix will be much more efficient than

Type 3 discrete Laplacians as the latter requires the version

of two matrixes, the larger one with a size of 3 × 3 for 2D

cases and 6 × 6 for 3D cases, respectively.

6 Patch tests of MLPGR-02 and comparative

studies

Two cases are considered in this section. One is that the

MLPGR-02 scheme is applied to solve Poisson’s Equa-

tion about a simple problem defined by ∇2 p = 0 with

p(0, y) = 0, p(1, y) = 0, p(x, 0) = 0, p(x, 1) = sin(πx),

solely for this paper. The analytical solution for this case is

p(x, y) = sinh(πy)sin(πx). It is the steady-state solution

of the case studied by Fatehi and Manzari (2011). To solve

the case, the domain is first divided into small squared ele-

ments (�x × �y with �x = �y = S). The particles are

then redistributed according to �x ′ and �y′ determined by

[1+kϑ]S, where ϑ is a random number between −0.5 ∼ 0.5

and different for �x ′ and �y′, and k is a constant factor, in the

same way as in Zheng et al. (2014). Clearly, as k increases,

the disorderliness becomes higher as discussed by Zheng

et al. (2014). Particularly, the random factor |ǫ| ≤ 0.1S

employed by Fatehi and Manzari (2011) corresponds to

k = 0.2.

Fig. 7 Wave time histories and

convergent behaviour of

different methods, originally

presented in Zheng et al. (2014).

a Wave time histories on the left

wall obtained by different

methods, b error of numerical

results
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The errors estimated by Er p =
√

∑Nt

i=1

∣

∣pi − pi,a

∣

∣

2
/

√

∑Nt

i=1

∣

∣pi,a

∣

∣

2
for k = 0.2 and 0.3 are shown in Fig. 5, where

pi is the numerical results, while pi,a is the analytical solu-

tion. From this figure, one can see that the convergent rate is

close to the second order. Compared with the methods using

Type 1 and Type 2 Laplacians which converge at a lower rate,

the convergent properties of the MLPGR-02 scheme is much

better. Compared with these adopting the Type 3 Laplacian,

the computational efficiency of the MLPGR-02 scheme is

higher as the inversion of a matrix with a size of 3x3 for 2D

cases and 6x6 for 3D cases is required by the Type 3 Lapla-

cian, but the inversion of such a higher order matrix is not

needed in the MLPGR-02 scheme.

Fig. 8 CPU times used by three numerical methods corresponding to

different number of particles, originally presented in Zheng et al. (2014)

The second case was considered by Zheng et al. (2014)

who developed a hybrid method. In the hybrid method,

pressure is solved using MLPGR-02 and all others are the

same as ISPH. They named the hybrid method as incom-

pressible smoothed particle hydrodynamics based on Rankin

source solution (ISPH_R) method. They applied the ISPH_R

method together with the ISPH method based on LP-SPH04

(named as CISPH) and with the traditional weakly com-

pressible SPH (named as SPH) to simulate the sloshing

waves in a tank (Fig. 6) that is subject to the motion

Xs = a0
/
√

gd(1 − cos 
t). The error of the numeri-

cal solution against the analytical solution is evaluated by

Erη =
√

∑Nt

i=1

∣

∣ηi − ηi,a

∣

∣

2
/

√

∑Nt

i=1

∣

∣ηi,a

∣

∣

2
, where ηi is the

numerical result at the time instant, Nt is the total time steps

in the simulation duration of t̃ = t
√

L/g = 50.0, and ηi,a

is the analytical solution at i th time step, given by Faltinsen

(1976).

To simulate the case, the particles are uniformly distrib-

uted at start, but can become disorderly during simulation as

they are moving together with waves, though the disordered

level is not very high as the motion of waves is not very big

in this case. Figure 7a depicts the wave time histories on the

left wall obtained by different methods and compared with

the analytical solution of Faltinsen (1976). It can be seen

from Fig. 7a that the results of the SPH has a good agree-

ment with the analytical solution at the first three periods, but

in the later stage numerical dissipation in the wave ampli-

tude becomes evident. In addition, in the time range (such as

t/
√

g/L = 35–40) of short and small waves, the traditional

SPH method cannot catch the details correctly. In contrast,

the results from the CISPH and ISPH_R method can well

catch the details of short and small waves and do not show

Fig. 9 Pressure distribution of

violent sloshing at two instants

of time [CISPH (upper row) and

ISPH_R (lower row), originally

presented in Zheng et al.

(2014)]. a t̃ = 20.8, b t̃ = 29.6

P: 0.01 0.03 0.04 0.05 0.07 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.19 0.20

(a) (b)
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visible dissipation. Figure 7b presents the errors of numerical

results from the SPH, CISPH and ISPH_R methods relative

to the analytical solution corresponding to different numbers

of particles employed, originally presented in Zheng et al.

(2014). It clearly shows that the convergent rate of results

from the ISPH_R method is about second order and the error

is considerably smaller than those of SPH and CISPH meth-

ods. In other words, to achieve any specified accuracy, the

ISPH_R method needs much less number of particles (or

larger particle sizes) than others. For example, corresponding

to Log(Erη) ≈ −3.55, the particle size required by ISPH_R

and CISPH are Log(S) ≈ −1.70 and −2.08, or S = 0.02

and 0.008, respectively. In addition, the ISPH_R can lead to

a low level of error, such as Log(Erη) = −4, but CISPH

cannot yield a result with such a low error.

To explore the properties of the methods in another way,

Fig. 8 depicts the CPU time spent by all the methods corre-

sponding to different numerical errors on the same computer,

which is also originally presented in Zheng et al. (2014). One

can see from Fig. 8 that the ISPH_R method needs much less

CPU time to achieve the same level of accuracy. For exam-

ple, corresponding to Log(Erη) ≈ −3.545, the CPU times

Fig. 10 Comparison of

pressure time histories obtained

by using different methods a

SPH, b CISPH (CISPH2 in

Zheng et al. 2014) and c

ISPH_R, originally presented in

Zheng et al. (2014)

(a)

(b)

(c)
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spent by the ISPH_R and CISPH are Log(CPU_t) ≈ 2.97

and 4.02, corresponding to CPU_t ≈ 925 and 10,531 (about

11 times of the former) seconds, respectively. It is noted that

the CPU time for running a case may depend on the choice

of solver and preconditioner for solving the system of linear

algebraic equations resulting from the discretized equations.

As far as we know, the results in Fig. 8 were obtained by

a solver combining the GMRES with Gauss–Seidel method.

At each time step, they firstly run the Gauss–Seidel procedure

for a specified number of iterations and then run the GMRES

if necessary. If different procedure would have been used,

the CPU time would be different.

To further show the performance of different methods in

cases involving violent waves, Fig. 9 presents the pressure

distribution at two time instants for sloshing in a rectangular

tank shown in Fig. 6, but with the parameters of L = 0.6 m,

d = 0.12 m = 0.2 L, a0(moiton amplitude) = 0.05 m and

T0(moiton peirod) = 1.5 s. Figure 10 depicts the pressure

time histories recorded at a point on the left wall with a height

of 0.1667L, resulting from three approaches (SPH, ISPH_R

and CISPH defined above). The results are also compared

with Kishev and Kashiwagi (2006).

Gotoh et al. (2014) presented some results for the same

cases as in Figs. 9 and 10, which are produced using

CISPH-HS and CISPH-HS-HL-ECS. LP-SPH02 together

with a higher order source term was used in CISPH-HS.

LP-SPH08 was employed in CISPH-HS-HL-ECS together

with the error-compensating source (ECS) term. Their orig-

inal figures for pressure fields and pressure time histories

at the same point as in Fig. 10 are duplicated in Figs. 11

and 12, respectively. As they indicated, the pressure trace

by CISPH-HS is characterized by frequent and, relatively,

large-amplitude unphysical oscillations, while the results of

CISPH-HS-HL-ECS are much smoother. If comparing the

results in Figs. 10 and 12, one may find that the pressure

time histories produced by ISPH_R and CISPH-HS-HL-ECS

have a similar level of smoothness and agreement with the

experimental data. This indicated that the ECS term is quite

effective, because there are still visible unphysical oscil-

lations if it is not applied as shown in Fig. 4 of Gotoh

et al. (2014). It may be interesting to see more compar-

isons of different approaches to improve their performance

further.

Fig. 11 Qualitative comparison of pressure field obtained by CISPH-HS (left), experiment (center) and CISPH-HS-HL-ECS (right) at t = 0.1,

0.2, 0.3 and 0.4 T0, originally presented in Gotoh et al. (2014)
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Fig. 12 Time histories of

pressure obtained by

CISPH-HS, experiment and

CISPH-HS-HL-ECS, originally

presented in Gotoh et al. (2014)

7 Conclusions

This paper has reviewed the approaches to solve Pois-

son’s equation for pressure involved in incompressible

smoothed particle hydrodynamic (ISPH), moving particle

semi-implicit (MPS) and meshless local Petrov–Galerkin

method, based on Rankine source solution (MLPG_R) meth-

ods for simulating nonlinear or violent water waves assuming

fluids are the incompressible. As summarized in Table 2,

there are three different approaches, i.e. discretizing Lapla-

cian directly (DLD) by approximating the second-order

derivatives, transferring Poisson’s equation into a weak form

containing only gradient of pressure (WCG) and transferring

Poisson’s equation into a weak form that does not contain

any derivatives of functions to be solved (WCF). The first

approach DLD has been employed by most publications

related to ISPH and MPS, while the third approach WCF has

been implemented by the MLPG_R method for modelling

water waves.

For effectively implementing the first approach DLD,

three types of discrete Laplacians have been proposed as

summarized in Table 1. Type 1 does not need inversion of

matrix and so is relatively computationally efficient. How-

ever, the patch tests available have shown that this type of

discrete Laplacians may converge at a rate less than first

order for random (or disorderly) particle distribution. Type

3 is the most accurate one, but it requires the inversion of

two matrices (one of them with a size of 3 × 3 for 2D cases

and 6 × 6 for 3D cases) for each particle and so is relatively

computationally inefficient. Patch tests discussed above have

demonstrated that the convergent rate of this type can reach

to second order.

Type 1 discrete Laplacians in the DLD approach is rela-

tively easier to implement and have been the most popular

one so far, particularly in the community which employs the

ISPH and MPS methods. Their performance can be improved

by applying the error-compensating term on the right hand

side of Poisson’s equation, by reducing the randomness of

particle distribution and by adding a correction term near

the boundaries. More efforts may be made to improve their

performance by enhancing the convergent rate.

The third approach (WCF) adopted by the MLPG_R

method does not need to deal with any derivative and so

has no issue related to discretizing derivatives when solv-

ing Poisson’s equation for pressure. Using relatively simple

approximation (requiring only inversion of one matrix with
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Table 2 Three approaches for solving Poisson’s equation

Approaches Discretising Laplacian directly (DLD) Weak form containing only

gradient (WCG)

Weak form containing no

derivatives of functions to be

solved (WCF)

Features Requiring approximation to second derivatives of function

to be solved

Requiring approximation to first

derivatives of function to be

solved

Requiring approximation to

function to be solved, not

derivatives

Methods involved ISPH MPS ISPH; MLPG_R MLPG_R

Discretization Type 1: Type 1:

LP-SPH01 LP-MPS01

LP-SPH03 LP-MPS02

LP-SPH05-06

LP-SPH08
Bonet and Kulasegaram (2002)

MLPGR-02

Type 2: Type 2: MLPGR-01

LP-SPH07 LP-MPS03

Type 3: Type 3:

LP-SPH04, LP-MPS04

CSPM

Inversion of matrixes Type 1: not need

Type 2: inversion of 1 matrix with size of 2 × 2 for

2D cases and 3 × 3 for 3D cases

Refer to texts in Sect. 5, not

repeated here as this approach is

not popular

inversion of 1 matrix with a size of

2 × 2 for 2D cases and 3 × 3 for

3D cases, respectively

Type 3:

LP-SPH04: Inversion of two matrixes, both

with a size of 2 × 2 for 2D cases and 3 × 3 for 3D

cases;

CSPM and LP-MPS04: inversion of two matrixes

with a size of the larger matrix being 3 × 3 for 2D

cases and 6 × 6 for 3D cases;

Patch test results Type 1: divergent for a higher level of particle

distribution randomness; and converges at a rate

less than first order for a lower level of particle

distribution randomness

Type 3:

LP-SPH04: Second-order convergent rate in

some cases but the rate being significantly less than

second order when applying it to solve simplified

fluid problems

Not available Second-order convergent rate for

disorderly distribution of

particles in solving a simplified

problem and also in solving

sloshing waves with small

amplitudes, but not so popular

until now
CSPM and LP-MPS04: second-order convergent

rate for disorderly distribution of particles

1
23
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a size of 2 × 2 for 2D cases and 3 × 3 for 3D cases) to

the pressure, one can achieve the second-order convergent

rate in patch pests, as that achieved by using Type 3 discrete

Laplacians in the first approach, and also in solving the slosh-

ing waves with small amplitudes. In addition, limited tests

in literature available demonstrate that the ISPH based on

the third approach (WCF) requires less CPU time to achieve

the results with the same accuracy compared to ISPH based

on the first approach (DLD) for simulating sloshing waves.

Nevertheless, the WCF approach is currently less popular

than others, perhaps because it is relatively new as it has just

started to be used since 2005.

More comparative studies are encouraged, in particular

for applying all the schemes to the same cases. The studies

should compare convergent rate, accuracy and computational

efficiency of different approaches. Such studies help fully

understand the behaviours of the different approaches and

select the best for modelling water waves in general cases.
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