10 research outputs found

    The Role of Circulating Serotonin in the Development of Chronic Obstructive Pulmonary Disease

    Get PDF
    BACKGROUND: Cigarette smoking is a major risk factor in the development of age-related chronic obstructive pulmonary disease (COPD). The serotonin transporter (SERT) gene polymorphism has been reported to be associated with COPD, and the degree of cigarette smoking has been shown to be a significant mediator in this relationship. The interrelation between circulating serotonin (5-hydroxytyptamine, 5-HT), cigarette smoking and COPD is however largely unknown. The current study aimed at investigating the mediation effects of plasma 5-HT on cigarette smoking-induced COPD and the relation between plasma 5-HT levels and age. METHODS: The association between plasma 5-HT, age and COPD was analyzed in a total of 62 COPD patients (ever-smokers) and 117 control subjects (healthy non-smokers and ever-smokers). Plasma 5-HT levels were measured by enzyme-linked immuno assay (EIA). RESULTS: The elevated plasma 5-HT levels were significantly associated with increased odds for COPD (OR = 1.221, 95% CI = 1.123 to 1.319, p<0.0001). The effect remained significant after being adjusted for age and pack-years smoked (OR = 1.271, 95% CI = 1.134 to 1.408, p = 0.0003). Furthermore, plasma 5-HT was found to mediate the relation between pack-years smoked and COPD. A positive correlation (r = 0.303, p = 0.017) was found between plasma 5-HT levels and age in COPD, but not in the control subjects (r = -0.149, p = 0.108). CONCLUSION: Our results suggest that cigarette smoke-induced COPD is partially mediated by the plasma levels of 5-HT, and that these become elevated with increased age in COPD. The elevated plasma 5-HT levels in COPD might contribute to the pathogenesis of this disease.published_or_final_versio

    Selective Serotonin Reuptake Inhibitor Use Is Associated with Right Ventricular Structure and Function: The MESA-Right Ventricle Study

    Get PDF
    PURPOSE:Serotonin and the serotonin transporter have been implicated in the development of pulmonary hypertension (PH). Selective serotonin reuptake inhibitors (SSRIs) may have a role in PH treatment, but the effects of SSRI use on right ventricular (RV) structure and function are unknown. We hypothesized that SSRI use would be associated with RV morphology in a large cohort without cardiovascular disease (N = 4114). METHODS:SSRI use was determined by medication inventory during the Multi-Ethnic Study of Atherosclerosis baseline examination. RV measures were assessed via cardiac magnetic resonance imaging. The cross-sectional relationship between SSRI use and each RV measure was assessed using multivariable linear regression; analyses for RV mass and end-diastolic volume (RVEDV) were stratified by sex. RESULTS:After adjustment for multiple covariates including depression and left ventricular measures, SSRI use was associated with larger RV stroke volume (RVSV) (2.75 mL, 95% confidence interval [CI] 0.48-5.02 mL, p = 0.02). Among men only, SSRI use was associated with greater RV mass (1.08 g, 95% CI 0.19-1.97 g, p = 0.02) and larger RVEDV (7.71 mL, 95% 3.02-12.40 mL, p = 0.001). SSRI use may have been associated with larger RVEDV among women and larger RV end-systolic volume in both sexes. CONCLUSIONS:SSRI use was associated with higher RVSV in cardiovascular disease-free individuals and, among men, greater RV mass and larger RVEDV. The effects of SSRI use in patients with (or at risk for) RV dysfunction and the role of sex in modifying this relationship warrant further study

    Platelet serotonin content and transpulmonary platelet serotonin gradient in patients with pulmonary hypertension

    Full text link
    Background: The serotonin system has repeatedly been associated with the pathogenesis of pulmonary hypertension (PH). Objective: To comparatively analyze plasmatic and intrathrombocytic serotonin levels in arterial and mixed venous blood of patients with PH and unaffected controls to elucidate pulmonary serotonin metabolisms. Patients and Methods: Catheters were placed in the radial and pulmonary artery in patients with PH (n = 13) for diagnosis and in age-matched controls (n = 6) undergoing percutaneous closure of the patent foramen ovale. Arterial and mixed venous blood samples were immediately centrifuged to obtain plasma and platelets and thereafter frozen at -20 degrees C. After careful thawing, plasmatic and platelet serotonin levels were determined by ELISA. Results: PH was classified as arterial in 4 and chronic thromboembolic in 9 patients with a mean pulmonary artery pressure of 37 (interquartile range: 32-43) mm Hg. Platelet serotonin content was significantly lower in the PH patients than in the controls. The mean transpulmonary gradient (arterial-mixed venous) was negative in the PH group and positive in the controls. An inverse correlation was found between the arterial blood platelet serotonin content and pulmonary hemodynamics. Plasmatic serotonin levels did not differ between the PH and control groups. Conclusion: The lower platelet serotonin concentration in PH patients compared with unaffected controls is an unprecedented finding. The negative transpulmonary platelet serotonin gradient and the strong negative correlation of arterial blood platelet serotonin with pulmonary hemodynamics might indicate increased serotonin uptake in the lungs of PH patients

    Serotonin Transporter Polymorphisms in Patients With Portopulmonary Hypertension

    Get PDF
    The long allele of a functional promoter polymorphism in the serotonin transporter (SERT) is associated with an increased risk of some forms of pulmonary arterial hypertension. We hypothesized that the long allele or other polymorphisms in SERT would be associated with an increased risk of portopulmonary hypertension (PPHTN) in patients with advanced liver disease

    Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis

    No full text
    The antithrombotic surface of endothelium is regulated in a coordinated manner. Tissue factor pathway inhibitor (TFPI) localized at the endothelial cell surface regulates the production of FXa by inhibiting the TF/VIIa complex. Systemic homozygotic deletion of the first Kunitz (K1) domain of TFPI results in intrauterine lethality in mice. Here we define the cellular sources of TFPI and their role in development, hemostasis, and thrombosis using TFPI conditional knockout mice. We used a Cre-lox strategy and generated mice with a floxed exon 4 (TFPIFlox) which encodes for the TFPI-K1 domain. Mice bred into Tie2-Cre and LysM-Cre lines to delete TFPI-K1 in endothelial (TFPITie2) and myelomonocytic (TFPILysM) cells resulted in viable and fertile offspring. Plasma TFPI activity was reduced in the TFPITie2 (71% ± 0.9%, P < .001) and TFPILysM (19% ± 0.6%, P < .001) compared with TFPIFlox littermate controls. Tail and cuticle bleeding were unaffected. However, TFPITie2 mice but not TFPILysM mice had increased ferric chloride–induced arterial thrombosis. Taken together, the data reveal distinct roles for endothelial- and myelomonocytic-derived TFPI

    Pulmonary Hypertension: Biomarkers

    No full text
    corecore