48 research outputs found

    Label-free Detection of Influenza Viruses using a Reduced Graphene Oxide-based Electrochemical Immunosensor Integrated with a Microfluidic Platform

    Get PDF
    Reduced graphene oxide (RGO) has recently gained considerable attention for use in electrochemical biosensing applications due to its outstanding conducting properties and large surface area. This report presents a novel microfluidic chip integrated with an RGO-based electrochemical immunosensor for label-free detection of an influenza virus, H1N1. Three microelectrodes were fabricated on a glass substrate using the photolithographic technique, and the working electrode was functionalized using RGO and monoclonal antibodies specific to the virus. These chips were integrated with polydimethylsiloxane microchannels. Structural and morphological characterizations were performed using X-ray photoelectron spectroscopy and scanning electron microscopy. Electrochemical studies revealed good selectivity and an enhanced detection limit of 0.5 PFU mL(-1), where the chronoamperometric current increased linearly with H1N1 virus concentration within the range of 1 to 104 PFU mL(-1) (R-2 = 0.99). This microfluidic immunosensor can provide a promising platform for effective detection of biomolecules using minute samples.ope

    Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives

    Get PDF
    The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green'' chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed

    Magneto-immunoassay for the detection and quantification of human growth hormone

    No full text
    Abstract Physiological and endocrine maintenance of a normal human growth hormone (hGH) concentration is crucial for growth, development, and a number of essential biological processes. In this study, we describe the preparation and characterization of magnetic nanoparticles coated with a gold shell (MNPs-Au). The optimal surface concentration of monoclonal anti-hGH antibodies (m-anti-hGH) on magnetic nanoparticles, as well as conditions that decrease non-specific interactions during the magneto-immunoassay, were elaborated. After the selective recognition, separation, and pre-concentration of hGH by MNPs-Au/m-anti-hGH and the hGH interaction with specific polyclonal biotin-labeled antibodies (p-anti-hHG-B) and streptavidin modified horseradish peroxidase (S-HRP), the MNPs-Au/m-anti-hGH/hGH/p-anti-hGH-B/S-HRP immunoconjugate was formed. The concentration of hGH was determined after the addition of 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide substrate solution for HRP; the absorbance at 450 nm was registered after the addition of STOP solution. The developed sandwich-type colorimetric magneto-immunoassay is characterized by a clinically relevant linear range (from 0.1 to 5.0 nmol L⁻¹, R² 0.9831), low limit of detection (0.082 nmol L⁻¹), and negligible non-specific binding of other antibodies or S-HRP. The obtained results demonstrate the applicability of the developed magneto-immunoassay for the concentration and determination of hGH in the serum. Additionally, important technical solutions for the development of the sandwich-type colorimetric magneto-immunoassay are discussed
    corecore