107 research outputs found

    Kinematic Density Waves in Accretion Disks

    Full text link
    When thin accretion disks around black holes are perturbed, the main restoring force is gravity. If gas pressure, magnetic stresses, and radiation pressure are neglected, the disk remains thin as long as orbits do not intersect. Intersections would result in pressure forces which limit the growth of perturbations. We find that a discrete set of perturbations is possible for which orbits remain non-intersecting for arbitrarily long times. These modes define a discrete set of frequencies. We classify all long-lived perturbations for arbitrary potentials and show how their mode frequencies are related to pattern speeds computed from the azimuthal and epicyclic frequencies. We show that modes are concentrated near radii where the pattern speed has vanishing radial derivative. We explore these modes around Kerr black holes as a possible explanation for the high-frequency quasi-periodic oscillations of black hole binaries such as GRO J1655-40. The long-lived modes are shown to coincide with diskoseismic waves in the limit of small sound speed. While the waves have long lifetime, they have the wrong frequencies to explain the pairs of high-frequency quasi-periodic oscillations observed in black hole binaries.Comment: 28 pages, 6 figures; extended comparison with diskoseismology; added reference to astro-ph/060368

    Anomalously Weak Dynamical Friction in Halos

    Full text link
    A bar rotating in a pressure-supported halo generally loses angular momentum and slows down due to dynamical friction. Valenzuela & Klypin report a counter-example of a bar that rotates in a dense halo with little friction for several Gyr, and argue that their result invalidates the claim by Debattista & Sellwood that fast bars in real galaxies require a low halo density. We show that it is possible for friction to cease for a while should the pattern speed of the bar fluctuate upward. The reduced friction is due to an anomalous gradient in the phase-space density of particles at the principal resonance created by the earlier evolution. The result obtained by Valenzuela & Klypin is probably an artifact of their adaptive mesh refinement method, but anyway could not persist in a real galaxy. The conclusion by Debattista & Sellwood still stands.Comment: To appear in "Island Universes - Structure and Evolution of Disk Galaxies" ed. R. S. de Jong, 8 pages, 4 figures, .cls and .sty files include

    Chaotic and regular motion around generalized Kalnajs discs

    Full text link
    The motion of test particles in the gravitational fields generated by the first four members of the infinite family of generalized Kalnajs discs, is studied. In first instance, we analyze the stability of circular orbits under radial and vertical perturbations and describe the behavior of general equatorial orbits and so we find that radial stability and vertical instability dominate such disc models. Then we study bounded axially symmetric orbits by using the Poincare surfaces of section and Lyapunov characteristic numbers and find chaos in the case of disc-crossing orbits and completely regular motion in other cases

    High resolution simulations of unstable modes in a collisionless disc

    Full text link
    We present N-body simulations of unstable spiral modes in a dynamically cool collisionless disc. We show that spiral modes grow in a thin collisionless disk in accordance with the analytical perturbation theory. We use the particle-mesh code SUPERBOX with nested grids to follow the evolution of unstable spirals that emerge from an unstable equilibrium state. We use a large number of particles (up to 40 million particles) and high-resolution spatial grids in our simulations (128^3 cells). These allow us to trace the dynamics of the unstable spiral modes until their wave amplitudes are saturated due to nonlinear effects. In general, the results of our simulations are in agreement with the analytical predictions. The growth rate and the pattern speed of the most unstable bar-mode measured in N-body simulations agree with the linear analysis. However the parameters of secondary unstable modes are in lesser agreement because of the still limited resolution of our simulations.Comment: 11 pages, 8 figures in 22 files, A&A in print: Oct. 1st 200

    Leading Wave as a Component of the Spiral Pattern of the Galaxy

    Full text link
    The spiral pattern of the Galaxy identified by analyzing the kinematics of young stars within 3 kpc of the Sun is Fourier decomposed into spiral harmonics. The spiral pattern of the Galaxy is shown to be representable as a superposition of trailing and leading waves with interarm distances of 1.8(+/-0.4) kpc and 4(+/-2) kpc, respectively. Shock waves are probably present only in the portions of the trailing spiral pattern where it crosses the crest of the leading wave. The small interarm distance of the trailing spiral wave (1.8 kpc) can be explained by its evolution - by the decrease in the interarm distance as the wave is displaced toward the inner Lindblad resonance. The Carina arm may be part of this resonance ring.Comment: 17 pages, 4 figures, to be published in Astronomy Letters, 200

    ウィスコンシン ダイガク マディソンコウ ガ ジッシ シテイル ナンキョク ムジン キショウ カンソク (AWS) ケイカク ノ 2011-2012 ネン カキ ノ カツドウ

    Get PDF
    ウィスコンシン大学マディソン校で推進している南極無人気象観測計画(Antarctic Automatic Weather Station(AWS)program)の32 年目の観測が,2011/2012年の南半球夏期に完了した.無人気象観測網を利用して南極の気象と気候の研究が行われている.今シーズンはロス島周辺域,ロス棚氷,西南極,東南極にわたる領域で活動した.基本的に観測点のデータはアルゴス衛星を中継して配信されるが,今年はロス島周辺域の多くの観測点で,マクマード基地を中継して"Freewave modem"を通して配信された.各無人気象観測点報告には,現在設置されている測器と動作状況が含まれる.また,無人気象観測計画の全体像を,野外活動の実施状況に沿って示す.During the 2011-2012 austral summer, the Antarctic Automatic Weather Station (AWS) program at the University of Wisconsin?Madison completed its 32nd year of observations. Ongoing studies utilizing the network include topics in Antarctic meteorology and climate studies. This field season consisted of work throughout the Ross Island area, the Ross Ice Shelf, West Antarctica, and East Antarctica. Argos satellite transmissions are the primary method for relaying station data, but throughout this year, a number of stations in the Ross Island area have been converted to Freewave modems, with their data being relayed through McMurdo station. Each AWS station report contains information regarding the instrumentation currently installed and the work performed at each site. An overview of the AWS applications is included along with field work accomplished

    An inner ring and the micro lensing toward the Bulge

    Get PDF
    All current Bulge-Disk models for the inner Galaxy fall short of reproducing self-consistently the observed micro-lensing optical depth by a factor of two (>2σ> 2\sigma). We show that the least mass-consuming way to increase the optical depth is to add density roughly half-way the observer and the highest micro-lensing-source density. We present evidence for the existence of such a density structure in the Galaxy: an inner ring, a standard feature of barred galaxies. Judging from data on similar rings in external galaxies, an inner ring can contribute more than 50% of a pure Bulge-Disk model to the micro-lensing optical depth. We may thus eliminate the need for a small viewing angle of the Bar. The influence of an inner ring on the event-duration distribution, for realistic viewing angles, would be to increase the fraction of long-duration events toward Baade's window. The longest events are expected toward the negative-longitude tangent point at \ell\sim -22\degr . A properly sampled event-duration distribution toward this tangent point would provide essential information about viewing angle and elongation of the over-all density distribution in the inner Galaxy.Comment: 9 pages, 7(15) figs, LaTeX, AJ (accepted

    Fractional Derivative Approach to the Self-gravitation Equation

    Full text link
    A new formalism is presented for finding equilibrium distribution functions for axisymmetric systems. The formalism, obtainded by using the concept of fractional derivatives, generalizes the methods of Fricke (1952), Kalnajs (1972) and Jiang & Ossipkov (2007), and has the advantage that can be applied to a wider variety of models. We found that this approach can be applied both to tridimensional systems and to flat systems, without the necessity of dealing with a pseudo-volume mass density. As an application, we obtain the distribution functions of the Binney's logarithmic model and of the Mestel disc.Comment: 5 pages, no figures, submitted to MNRA

    Finite thin disc models of four galaxies in the Ursa Major cluster: NGC3877, NGC3917, NGC3949 and NGC4010

    Full text link
    Finite thin disc models of four galaxies in the Ursa Major cluster are presented. The models are obtained by means of the Hunter method and the particular solutions are choosen in such a way that the circular velocities are adjusted very accurately to the observed rotation curves of some specific spiral galaxies. We present particular models for the four galaxies NGC3877, NGC3917, NGC3949 and NGC4010 with data taken from the recent paper by Verheijen & Sancici (2001). By integrating the corresponding surface mass densities, we obtain the total mass M of these four galaxies, all of them being of the order of 10^10 solar masses. These obtained values for M may be taken as a quite accurately estimative of the mass upper bound of these galaxies, since in the model was considered that all their mass was concentrated at the galactic disc. The models can be consider as a first approximation to the obtaining of quite realistic models of spiral galaxiesComment: Submitted to MNRA

    Halo properties and secular evolution in barred galaxies

    Full text link
    The halo plays a crucial role in the evolution of barred galaxies. Its near-resonant material absorbs angular momentum emitted from some of the disc particles and helps the bar become stronger. As a result, a bar (oval) forms in the inner parts of the halo of strongly barred disc galaxies. It is thinner in the inner parts (but still considerably fatter than the disc bar) and tends to spherical at larger radii. Its length increases with time, while always staying shorter than the disc bar. It is roughly aligned with the disc bar, which it trails only slightly, and it turns with roughly the same pattern speed. The bi-symmetric component of the halo density continues well outside the halo bar, where it clearly trails behind the disc bar. The length and strength of the disc and halo bars correlate; the former being always much stronger than the latter. If the halo is composed of weakly interacting massive particles, then the formation of the halo bar, by redistributing the matter in the halo and changing its shape, could influence the expected annihilation signal. This is indeed found to be the case if the halo has a core, but not if it has a steep cusp. The formation and evolution of the bar strongly affect the halo orbits. A fraction of them becomes near-resonant, similar to the disc near-resonant orbits at the same resonance, while another fraction becomes chaotic. Finally, a massive and responsive halo makes it harder for a central mass concentration to destroy the disc bar.Comment: 6 pages, 3 figures, to appear in "Island Universes - Structure and Evolution of Disk Galaxies" ed. R. S. de Jon
    corecore