All current Bulge-Disk models for the inner Galaxy fall short of reproducing
self-consistently the observed micro-lensing optical depth by a factor of two
(>2σ). We show that the least mass-consuming way to increase the
optical depth is to add density roughly half-way the observer and the highest
micro-lensing-source density. We present evidence for the existence of such a
density structure in the Galaxy: an inner ring, a standard feature of barred
galaxies. Judging from data on similar rings in external galaxies, an inner
ring can contribute more than 50% of a pure Bulge-Disk model to the
micro-lensing optical depth. We may thus eliminate the need for a small viewing
angle of the Bar. The influence of an inner ring on the event-duration
distribution, for realistic viewing angles, would be to increase the fraction
of long-duration events toward Baade's window. The longest events are expected
toward the negative-longitude tangent point at ℓ∼ -22\degr . A properly
sampled event-duration distribution toward this tangent point would provide
essential information about viewing angle and elongation of the over-all
density distribution in the inner Galaxy.Comment: 9 pages, 7(15) figs, LaTeX, AJ (accepted