988 research outputs found

    The Brain-Gut-Microbiome Axis.

    Get PDF
    Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases

    Ir d-band Derived Superconductivity in the Lanthanum-Iridium System LaIr3

    Get PDF
    The electronic properties of the heavy metal superconductor LaIr3 are reported. The estimated superconducting parameters obtained from physical properties measurements indicate that LaIr3 is a BCS-type superconductor. Electronic band structure calculations show that Ir d- states dominate the Fermi level. A comparison of electronic band structures of LaIr3 and LaRh3 shows that the Ir-compound has a strong spin-orbit-coupling effect, which creates a complex Fermi surface.Comment: 6 pages and 5 figure

    On the dynamic analysis of a novel snake robot: preliminary results

    Get PDF
    In recent years, modular robotics has become of great interest in the robotics community. Among them, snake robots are among the most flexible and versatile type of mobile robots, well-suited to a large number of applications, such as exploration and inspection tasks, participation to search and rescue missions etc. The present paper investigates the design of a novel snake robot, named Rese_Q01, currently being designed at Politecnico di Torino. In order to characterise the dynamic behaviour of the robot, a simple vehicle dynamics model is developed and basic simulations are carried out for a first implementation of a unit consisting of two modules. Preliminary results show the influence of the robot velocity on the trajectory curvature radius, as well as the effect of different ground/tire friction conditions. This analysis is the first step in order to develop effective control strategies for robot trajectories

    Source rock and shale oil potential of the Pabdeh Formation (Middle-Late Eocene) in the Dezful Embayment, southwest Iran

    Get PDF
    The Pabdeh Brown Shale Unit (BSU) is an organic-rich calcareous mudstone within the Paleogene Pabdeh Formation, which has not yet been investigated in detail. A total of 166 core and cutting samples were selected from four wells in the Dezful Embayment to investigate the organic geochemical and the mineralogical compositions, as well as the shale oil potential of the BSU. XRD results show that it is mainly comprised of calcite (53wt.%), clay minerals (25wt.%), and quartz (14wt.%). TOC contents generally range from 1 to 9wt.% (avg. 4.2, 2.9, 5.2 and 3.3wt.%, for GS, KR, RR and RS wells, respectively) with HI values ranging between 400 and 650 mg HC/g TOC. Based on average values of T max and vitrinite reflectance, as well as saturate biomarker ratios, the BSU is immature at wells RR and RS (ranging from 0.3 to 0.53%) and its maturity increases northward at wells KR and GS (ranging from 0.5% to 0.67%). The organic matter is dominated by Type ΙΙ kerogen and is generally composed of liptinite and amorphous material with minor terrestrial input. Based on various biomarker parameters, the organic matter was most likely deposited under anoxic marine conditions. The mineralogical characteristics (i.e. presence of brittle minerals) and organic geochemical properties (i.e. TOC >2wt% and Type II kerogen) support the conclusion that the Pabdeh BSU displays a considerable shale oil potential where it attains appropriate thermal maturity

    QuantiFERON-TB gold and tuberculin skin test for the diagnosis of latent tuberculosis infection in children

    Get PDF
    Background: Appropriate diagnosis and treatment of latent tuberculosis infection (LTBI) play the most important role in the control of tuberculosis. This study aimed to determine theprevalence of LTBI among healthy tuberculosis unexposed children vaccinated with BCG using the tuberculin skin test (TST) and QuantiFERON TB Gold In-Tube (QFT-GIT) and comparing the agreement between the two tests. Methods: A cross-sectional study was carried out between October 2009 and March 2010 in 24 schools and 11 daycare centers. A total of 967 children were divided into 15 age groups, with a minimum of 64 children per group. Results: The prevalence rates of LTBI with TST were 3.8, and 2.2 with QFT-GIT. One case was positive in TST and QFT-GIT, 20 cases were QFT-GIT positive, but TST negative and 36 cases were TST positive, but QFT-GIT negative, and finally, 910 cas eswere negative in both. There was poor agreement between TST and QFT-GIT (1.8, 95, CI: 0-5.3, k=0.007). The specificity of QFT-GIT in the BCG vaccinate, children aged 1-15 years old, was 97.8 (97.8, 95 CI: 96.8-98.8). After three months, 2/17 (11.8) of those initially QFT-GIT negative converted, and 10/15 (66) of those initially QFT-GITpositive reverted. Conclusion: It seems that TST and QFT-GIT are not appropriate tests for the diagnosis of LTBI among healthy tuberculosis unexposed BCG vaccinated children. There was a low reproducibility rate of QFT-GIT. The cause of the the poor agreement requires further studies. © 2015 Shiraz University of Medical Sciences. All rights reserved

    Source rock and shale oil potential of the Pabdeh Formation (Middle–Late Eocene) in the Dezful Embayment, southwest Iran

    Get PDF
    The Pabdeh Brown Shale Unit (BSU) is an organic-rich calcareous mudstone within the Paleogene Pabdeh Formation, which has not yet been investigated in detail. A total of 166 core and cutting samples were selected from four wells in the Dezful Embayment to investigate the organic geochemical and the mineralogical compositions, as well as the shale oil potential of the BSU. XRD results show that it is mainly comprised of calcite (53wt.%), clay minerals (25wt.%), and quartz (14wt.%). TOC contents generally range from 1 to 9wt.% (avg. 4.2, 2.9, 5.2 and 3.3wt.%, for GS, KR, RR and RS wells, respectively) with HI values ranging between 400 and 650 mg HC/g TOC. Based on average values of Tmax and vitrinite reflectance, as well as saturate biomarker ratios, the BSU is immature at wells RR and RS (ranging from 0.3 to 0.53%) and its maturity increases northward at wells KR and GS (ranging from 0.5% to 0.67%). The organic matter is dominated by Type ΙΙ kerogen and is generally composed of liptinite and amorphous material with minor terrestrial input. Based on various biomarker parameters, the organic matter was most likely deposited under anoxic marine conditions. The mineralogical characteristics (i.e. presence of brittle minerals) and organic geochemical properties (i.e. TOC >2wt% and Type II kerogen) support the conclusion that the Pabdeh BSU displays a considerable shale oil potential where it attains appropriate thermal maturity.
    corecore