32 research outputs found

    Long-term Variability Properties and Periodicity Analysis for Blazars

    Get PDF
    In this paper, the compiled long-term optical and infrared measurements of some blazars are used to analyze the variation properties and the optical data are used to search for periodicity evidence in the lightcurve by means of the Jurkevich technique and the discrete correlation function (DCF) method. Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO 0235+164; 14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100; 5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years for PKS 1219+285; 2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279; 6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546; 2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698; 4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin

    Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case

    Full text link
    We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinates. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below 10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA

    Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420

    Get PDF
    In this paper, historical optical(UBVRI) data and newly observed data from the Yunnan Observatory of China(about100 years) are presented for BL Lacertae. Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/- 0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the literature; The Jurkevich method is used to investigate the existence of periods in the B band light curve, and a long-term period of 14 years is found. The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In addition, a close relation between B-I and B is found, suggesting that the spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ, Vol. 507, 199

    The kinematics in the pc-scale jets of AGN The case of S5 1803+784

    Full text link
    We present a kinematic analysis of jet component motion in the VLBI jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components. Understanding the complex kinematic phenomena can possibly provide insights into the differences between quasars and BL Lac objects. The blazar S5 1803+784 has been studied with VLBI at ν\nu =1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated. A careful study of the long-term kinematics reveals a new picture for component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known {\it stationary} jet component \sim 1.4 mas) and one faint component moving with an apparent superluminal speed (\sim 19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of \sim 8 to 9 years. We find a correlation between changes in the position angle and maxima in the total flux-density. We present evidence for a geometric origin of the phenomena and discuss possible models.Comment: The manuscript will be published by A&

    A search for periodicity in the light curves of selected blazars

    Full text link
    We present an analysis of multifrequency light curves of the sources 2223-052 (3C 446), 2230+114 (CTA 102), and 2251+158 (3C 454.3), which had shown evidence of quasi-periodic activity. The analysis made use of data from the University of Michican Radio Astronomy Observatory (USA) at 4.8, 8, and 14.5 GHz, as well as the Metsahovi Radio Astronomy Observatory (Finland) at 22 and 37 GHz. Application of two different methods (the discrete autocorrelation function and the method of Jurkevich) both revealed evidence for periodicity in the flux variations of these sources at essentially all frequencies. The periods derived for at least two of the sources -- 2223-052 and 2251+158-- are in good agreement with the time interval between the appearance of successive VLBI components. The derived periods for 2251+158 (P = 12.4 yr and 2223-052 (P = 5.8 yr) coincide with the periods found earlier by other authors based on optical light curves.Comment: 27 pages, 11 figures, accepted for publication in Astronomy Report

    Radio variability properties for radio sources

    Get PDF
    In this paper, we used the database of the university of Michigan Radio Astronomy Observatory (UMRAO) at three (4.8 GHz, 8.0 GHZ, and 14.5 GHz) radio frequency to analyze the radio light curves by the power spectral analysis method in search of possible periodicity. The analysis results showed that the radio sources display astrophysically meaningful periodicity ranging from 2.2 to 20.8 years in their light curves at the three frequencies. We also calculated the variability parameters and investigated the correlations between the variability parameter and the flux density. For the variability parameters, we found that the parameters at higher frequency are higher than those in the lower frequency. In addition, the variability parameters of BL Lacertae objects are larger than those of flat-spectrum radio quasars. suggesting that they are more variable than flat spectrum radio quasars.Comment: 28 pages, 6 figures, 3 tables, A&A in pres

    Ten-year optical monitoring of PKS 0735+178: historical comparison, multiband behaviour and variability timescales

    Get PDF
    New data and results on the optical behaviour of the blazar PKS 0735+178 are presented. In addition the whole historical light curve, and a new photometric calibration of comparison stars are reported. Optical spectral indexes are calculated and studied on years scales, while several methods for time-series analysis are applied to the whole historical series and to each observing season of our data set. This allowed to search and identify optical variability modes, characteristic timescales and the signal power spectrum over 3 decades in time. In the last 10 years the optical flux of PKS 0735+178 exhibited a rather achromatic long-term behaviour and a variability mode resembling the shot-noise. The brightness level was in an intermediate/low state with a mild flaring activity and a superimposition/succession of rapid and slower flares, with no extraordinary/isolated outbursts but, at any rate, characterized by 1 major active phase in 2001. Several mid-term scales (days, weeks) were found, the more common falling into values of about 27-28 days, 50-56 days and 76-79 days. The rapid variability in the historical curve appear to be modulated by a general, slower and rather oscillating trend, where typical timescales of about 4.5, 8.5 and 11-13 years can be identified. This spectral and temporal analysis, accompanying our data publication, suggests the occurrence of distinctive variability signatures at days/weeks scales, that can likely be of transitory nature. On the other hand the possible pseudo-cyclical or multi-component modulations at long times could be more stable, recurrent and correlated to the bimodal radio flux behaviour and the twisted radio structure observed by many years in this blazar.Comment: 21 pages, 13 figures, 3 tables. Typeset with a LaTex2e-AMSLaTex code prepared by the author (using AA vers. 6.1, June 2006, class, and natbib, hyperref, graphicx, packages). Accepted for publication in Astronomy & Astrophysic

    Obtaining recullyarized liver transplantats as a perspective direction of regenerative medicine

    No full text
    corecore