965 research outputs found

    A study of marine luminescence signatures, part 1

    Get PDF
    Fluorescent excitation and emission spectral data on chlorophyll and Gelbstoff in natural sea waters from the Atlantic, Gulf, and Pacific coasts show that algae particulates are totally absorbing over much of the near ultraviolet and visible spectra and act approximately as quantum counters; plant pigments absorb energy and transfer a large portion to chlorophyll where some fraction is emitted as chlorophyll fluorescence. Gelbstoff data do not exhibit quantum counter action because of their low concentration. It is concluded that luminescence data of natural sea waters are useful in monitoring algal and Gelbstoff as well as pollutant concentrations

    A generalized Poloidal-Toroidal decomposition and an absolute measure of helicity

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordIn fluid mechanics and magneto-hydrodynamics it is often useful to decompose a vector field into poloidal and toroidal components. In a spherical geometry, the poloidal component contains all of the radial part of the field, while the curl of the toroidal component contains all of the radial current. This paper explores how they work in more general geometries, where space is foliated by nested simply connected surfaces. Vector fields can still be divided into poloidal and toroidal components, but in geometries lacking spherical symmetry it makes sense to further divide the poloidal field into a standard part and a 'shape' term, which in itself behaves like a toroidal field and arises from variations in curvature. The generalised P–T decomposition leads to a simple definition of helicity which does not rely on subtracting the helicity of a potential reference field. Instead, the helicity measures the net linking of the standard poloidal field with the toroidal field as well as the new shape field. This helicity is consistent with the relative helicity in spherical and planar geometries. Its time derivative due to motion of field lines in a surface has a simple and intuitively pleasing form.MB acknowledges STFC grant ST/R000891/1. GH acknowledges support from STFC grant ST/N000714/1

    The global distribution of magnetic helicity in the solar corona

    Get PDF
    By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Sun's corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningful measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines.</p

    Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients.

    Get PDF
    Differences in the gut microbiota have been reported between individuals with autism spectrum disorders (ASD) and neurotypical controls, although direct evidence that changes in the microbiome contribute to causing ASD has been scarce to date. Here we summarize some considerations of experimental design that can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor out important variables such as diet, prospective longitudinal studies that remove some of the influence of interpersonal variation in the microbiome (which is generally high, especially in children), and studies transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of technical variables, which have complicated efforts to combine existing studies, is critical when biological effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-reported diet and behavior data, and may provide a useful complement to other types of traditionally funded and conducted studies in the case of ASD, especially in the hypothesis generation phase

    Compendium of marine luminescence signatures, part 2 (appendix C)

    Get PDF
    Chlorophyll and Gelbstoff excitation and emission spectra of sea water samples are assembled according to geographic sites from the Atlantic and Gulf coasts, the west coast, and a location north of Hawaii. Data were taken by fluorescent spectrophotometer and include also laboratory algal cultures for comparison with the sea water samples

    Evolution of field line helicity in magnetic relaxation

    Get PDF
    This work was facilitated by Leverhulme Trust under Grant No. PRG-2017–169, with additional support from Science and Technology Facilities Council (UK) under consortium Grants Nos. ST/N000714, ST/N000781, and ST/S000321.Plasma relaxation in the presence of an initially braided magnetic field can lead to self-organization into relaxed states that retain non-trivial magnetic structure. These relaxed states may be in conflict with the linear force-free fields predicted by the classical Taylor theory, and remain to be fully understood. Here, we study how the individual field line helicities evolve during such a relaxation, and show that they provide new insights into the relaxation process. The line helicities are computed for numerical resistive-magnetohydrodynamic simulations of a relaxing braided magnetic field with line-tied boundary conditions, where the relaxed state is known to be non-Taylor. First, our computations confirm recent analytical predictions that line helicity will be predominantly redistributed within the domain, rather than annihilated. Second, we show that self-organization into a relaxed state with two discrete flux tubes may be predicted from the initial line helicity distribution. Third, for this set of line-tied simulations we observe that the sub-structure within each of the final tubes is a state of uniform line helicity. This uniformization of line helicity is consistent with Taylor theory applied to each tube individually. However, it is striking that the line helicity becomes significantly more uniform than the force-free parameter.Publisher PDFPeer reviewe

    Factorization for generic jet production

    Full text link
    Factorization is the central ingredient in any theoretical prediction for collider experiments. We introduce a factorization formalism that can be applied to any desired observable, like event shapes or jet observables, for any number of jets and a wide range of jet algorithms in leptonic or hadronic collisions. This is achieved by using soft-collinear effective theory to prove the formal factorization of a generic fully-differential cross section in terms of a hard coefficient, and generic jet and soft functions. In this formalism, whether a given observable factorizes in the usual sense, depends on whether it is inclusive enough, so the jet functions can be calculated perturbatively. The factorization formula for any such observable immediately follows from our general result, including the precise definition of the jet and soft functions appropriate for the observable in question. As examples of our formalism, we work out several results in two-jet production for both e+e- and pp collisions. For the latter, we also comment on how our formalism allows one to treat underlying events and beam remnants.Comment: 33 pages, v2: minor typos corrected, journal versio

    The Dependence of Coronal Loop Heating on the Characteristics of Slow Photospheric Motions

    Get PDF
    The Parker hypothesis (Parker (1972)) assumes that heating of coronal loops occurs due to reconnection, induced when photospheric motions braid field lines to the point of current sheet formation. In this contribution we address the question of how the nature of photospheric motions affects heating of braided coronal loops. We design a series of boundary drivers and quantify their properties in terms of complexity and helicity injection. We examine a series of long-duration full resistive MHD simulations in which a simulated coronal loop, consisting of initially uniform field lines, is subject to these photospheric flows. Braiding of the loop is continually driven until differences in behaviour induced by the drivers can be characterised. It is shown that heating is crucially dependent on the nature of the photospheric driver - coherent motions typically lead to fewer large energy release events, while more complex motions result in more frequent but less energetic heating events

    Braided magnetic fields:equilibria, relaxation and heating

    Get PDF
    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypothesis.Comment: To appear in Plasma Physics and Controlled Fusio

    Quantifying the tangling of trajectories using the topological entropy

    Get PDF
    We present a simple method to efficiently compute a lower limit of the topological entropy and its spatial distribution for two-dimensional mappings. These mappings could represent either two-dimensional time-periodic fluid flows or three-dimensional magnetic fields, which are periodic in one direction. This method is based on measuring the length of a material line in the flow. Depending on the nature of the flow, the fluid can be mixed very efficiently which causes the line to stretch. Here we study a method that adaptively increases the resolution at locations along the line where folds lead to high curvature. This reduces the computational cost greatly which allows us to study unprecedented parameter regimes. We demonstrate how this efficient implementation allows the computation of the variation of the finite-time topological entropy in the mapping. This measure quantifies spatial variations of the braiding efficiency, important in many practical applications.Comment: 11 pages, 9 figure
    • …
    corecore