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Abstract

In fluid mechanics and magneto-hydrodynamics it is often useful to
decompose a vector field into poloidal and toroidal components. In a
spherical geometry, the poloidal component contains all of the radial
part of the field, while the curl of the toroidal component contains
all of the radial current. This paper explores how they work in more
general geometries, where space is foliated by nested simply connected
surfaces. Vector fields can still be divided into poloidal and toroidal
components, but in geometries lacking spherical symmetry it makes
sense to further divide the poloidal field into a standard part and a
’shape’ term, which in itself behaves like a toroidal field and arises
from variations in curvature.

The generalised P–T decomposition leads to a simple definition of
helicity which does not rely on subtracting the helicity of a potential
reference field. Instead, the helicity measures the net linking of the
standard poloidal field with the toroidal field as well as the new shape
field. This helicity is consistent with the relative helicity in spherical
and planar geometries. Its time derivative due to motion of field lines
in a surface has a simple and intuitively pleasing form.

1



1 Introduction

In ideal magneto–hydrodynamics, the magnetic field lines are frozen into the
fluid – that is, they move like material curves transported by the fluid mo-
tion. Similarly, in inviscid fluid mechanics, the vorticity is frozen into the
fluid. Several conservation laws result from this frozen–in condition. Mag-
netic flux conservation and the Helmholtz circulation theorem are the most
familiar of these. Other conservation laws involve the topological structure of
the conserved flux or vorticity. The most well-known of these is called mag-
netic helicity, which describes the net linking of pairs of field lines. Other
invariants involve either weighted averages of these linkings, field-line helici-
ties (essentially linking of one field line with the rest of the field) (Yeates and
Hornig, 2013), or higher order linking structures (Monastyrski and Sasarov,
1987; Berger, 1990). In the presence of small resistivity, magnetic helicity is
robust; its dissipation is governed by strict inequalities (Berger, 1984). The
higher order invariants, however, are generally much more fragile
(Freedman and Berger, 1993).

Decomposition of vector fields into orthogonal components (where the
total energy equals the sum of the component energies) have proven useful
in analysing field structure, evolution and equilibria, as well as in the study
of solar, stellar, and planetary dynamos (Chandrasekhar and Kendall, 1957).
In the poloidal-toroidal decomposition (as in figure 1 below), at any spherical
surface the poloidal field contains all of the normal magnetic field, whereas
the curl of the toroidal field contains all of the normal electric current, e.g.
(Mo↵att, 1978). (This terminology should not be confused with toroidal-
poloidal coordinates used in a torus geometry like a tokamak, where the
toroidal direction winds the long way around, and the poloidal direction
winds the short way.)

Magnetic helicity was originally defined (Woltjer, 1958) in terms of vector
potentials, i.e. H =

R
A · B d3

x. Here r ⇥ A = B has an infinite set of
solutions, which di↵er from each other by gradient fields. In other words, the
vector potential is defined only up to a gauge transformation A ! A+r 

for some function  . When integrated over a volume V bounded by a simply
connected closed surface the gauge ambiguity vanishes: the answer is unique,
and equivalent to equation 1. However, if the boundary surface is open thenR
A · B d3

x is not well-defined. A resolution of this di�culty was given
in (Berger and Field, 1984), who suggested measuring helicity relative to a
reference potential (zero electric current) field.
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In the relative helicity formulation, one calculates the helicity of all space,
including both V and its complement Vext. Next, one constructs a reference
field consisting of a potential field (also called a vacuum field) in V , but the
same outside field in Vext. Finally, the helicity of this reference field is sub-
tracted from that of the original field. The result can then be shown to be
independent of any details of the outside field, and is gauge–invariant. Sev-
eral methods have been developed to simplify this calculation (e.g. choosing a
convenient gauge, or in fact using the poloidal–toroidal decomposition). This
formulation has a useful physical meaning: the relative helicity measures the
extra amount of helicity generated by electrical currents within V . In par-
ticular, the relative helicity of a potential field is always 0. Sometimes other
reference fields can be useful in elucidating the geometrical and topological
properties of a magnetic region (Longcope and Malanushenko, 2008).

Recently, however, some authors have found it useful to define an abso-

lute helicity in open volumes, with out any comparison to a reference field.
Low (2006, 2011, 2015) uses a form of the P–T decomposition with nested
cylindrical surfaces, and finds that the poloidal field can have self linking.

A complementary topological description of helicity is in terms of winding
numbers between field lines (Berger and Prior, 2006). Prior and Yeates (2014)
consider a volume consisting of a tube extending between parallel planes,
where the sides of the tube may form a distorted cylinder. The tube sides
are magnetic surfaces, but not necessarily the top and bottom. They show
that the net winding number summed over pairs of lines, even of a potential
field within the volume, may not be zero. They find a gauge for A which
reproduces the net winding. Their results are consistent with the relative
helicity where the volume V is chosen to be the entire space between the two
planes.

Consider a volume V which is bounded by a magnetic surface, where
B · n̂ = 0 (so that all field lines within V are completely contained within
V). We wish to define the closed magnetic helicity Hclosed of V as the net
linking of the field lines. Linking number is a non–local quantity: given only
knowledge about a small neighbourhood of a point in space, there is no way
of knowing whether the field line passing through that point links any other
field lines. Thus the magnetic helicity content of a volume V can not be
expressed as a three dimensional volume integral of a local helicity density.
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Instead, it can be defined as a double (six–dimensional) integral:

Hclosed =
1

4⇡

Z

V

Z

V
B(x) ·

r

r3
⇥B(x0) d3

x
0 d3

x (1)

where r = x0
� x (Mo↵att, 1969; Arnol’d and Khesin, 1998). The inner

integral gives the vector potential A, in its Biot-Savart form
(Cantarella, DeTurck, and Gluck, 2001).

Interestingly, however, we can reduce the dimensionality by one. Our
method will be to divide space up into parallel planes or concentric spheres
(or later, a foliation using arbitrary simply connected surfaces). Let us first
consider the planar case where V consists of all points lying between the
planes z = z0 and z = z1.

Imagine that we have two sets of field lines: the first set form rings in
horizontal planes z = constant (these will be called toroidal lines); the second
set pass through the planes without any vertical electrical current (these will
be called poloidal lines). The condition on the poloidal lines means that
the restriction of the poloidal field to any plane z = constant must be a
gradient field. This special case of closed toroidal lines contained within
parallel planes with poloidal lines crossing those planes is actually not so
special: any vector field has a unique decomposition as a sum of toroidal and
poloidal components (Chandrasekhar and Kendall, 1957): Given an arbitrary
magnetic field, we write

B = BP +BT . (2)

A review of the properties of the poloidal–toroidal (or Chandrasekhar–Kendall)
decomposition is given in section 2.

In any plane z = z0 we can ask how much vertical poloidal flux is encircled
by horizontal toroidal flux. This net linking of toroidal and poloidal flux can
be written as a double (four dimensional) integral on the surface:

F (z0) =
1

2⇡

Z

z=z0

BPz(x)

✓Z

z=z0

BT (x
0) · ẑ ⇥

r

r2
d2
x
0
◆
d2
x. (3)

To obtain the closed helicity over our volume, we add a fifth integral over
z: suppose all field lines close between heights z = a and z = b. Then the
planes at a and b are magnetic surfaces and

Hclosed =

Z b

a

F (z)dz. (4)
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Note that each surface integral F (z) is well defined. Thus we no longer
need to specify integrating helicity over a closed volume. We can now define
an open or absolute helicity H by integrating F (z) over any interval a  z 

b, whether bounded by closed surfaces or not:

H =

Z b

a

F (z)dz. (5)

In this way, we have removed the condition that the boundary of our volume
V be a closed magnetic surface. Similar constructions can be made for nested
spherical surfaces between two radii. Thus in any volume bounded by parallel
planes or concentric spheres, we can express helicity as the net linking of
toroidal and poloidal fields (Berger, 1985; Low, 2006, 2011, 2015). We could
in fact extend these ideas (and will, in section 3) to arbitrary nested simply
connected surfaces. In summary, we will show that a topologically meaningful
helicity integral can be defined within any simply connected surface, whether
magnetically closed or not, using a generalization of the poloidal–toroidal
decomposition.

In section 2 we review the properties of the poloidal–toroidal decompo-
sition in planar and spherical geometries. We pay special attention to the
geometric interpretation of the poloidal and toroidal vector potentials, and
how these lead naturally to measures of linking and twisting of fields which
can be summed to give the magnetic helicity.

In section 3 we extend the poloidal–toroidal decomposition to asymmet-
ric geometries. Special attention is paid to how the helicity changes. In
particular, the poloidal field can now have self–helicity.

In section 4 the flux of helicity through boundaries is investigated in
some detail. Every flux element piercing a closed boundary must return
somewhere; otherwise the volume would contain magnetic monopoles. If we
decompose a field into a set of flux elements, then it is useful to express the
helicity flux in terms of the rotation of flux elements about each other. This
requires defining a return flux for each element. The Gauss-Bonnet theorem
will be employed here to give an appropriate distribution for this return flux.
Conclusions will be given in section 6.
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2 Review of the Toroidal and Poloidal Field
Decomposition

In Cartesian or spherical geometries it is often useful to decompose a mag-
netic field B into toroidal and poloidal components B = BT +BP . We divide
space into a set of parallel planes (perpendicular to ẑ) or a set of concentric
spheres (perpendicular to r̂). The principal criterion employed in the decom-
position concerns the fluxes of magnetic field lines and electric current lines
through the surfaces.

We will write the curl of the magnetic fieldB as electric current J = r⇥B
(setting µ0 = 1 for simplicity). Let Bn and Jn be components of the fields
normal to one of our surfaces. Then the poloidal magnetic field BP contains
all of Bn and the curl of the toroidal field contains all of Jn, i.e.

BP · n̂ = Bn; BT · n̂ = 0; (6)

n̂ ·r⇥BT = Jn; n̂ ·r⇥BP = 0. (7)

In particular, the toroidal field lies entirely within one of the nested planar
or spherical surfaces: letting rk be the gradient within a surface,

BT · n̂ = 0; rk ·BT = 0. (8)

Meanwhile, the poloidal field has a property which will be important in
the theorems which follow. The surface components of BP form a gradient
field: if they did not, then there would be a non-zero Jn after taking the curl.

2.1 Some useful operators

The fields BP and BT are determined by the boundary data Bn or Jn. We
can express this idea by defining the normal component of the curl as the
operator

DV = n̂ ·r⇥V. (9)

Next consider its inverse operator D�1: given a scalar function f(x, y) or
f(✓,�) on a planar or spherical surface, we specify that the inverse normal
curl gives a divergence-free vector field parallel to the surface: if V = D

�1
f

then
r ·V = 0; n̂ ·V = 0. (10)
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This field is unique: if two fields V1 and V2 both satisfy these equations
then V2 �V1 would be a gradient field, (V2 �V1) = rk with zero diver-
gence. Thus the two-dimensional Laplacian �k = 0. For simply connected
compact surfaces the only solutions are  = constant. For infinite surfaces
we must also specify r ! 0 as r ! 1. Numerical details for solving
V = D

�1
f are given in section 3.3.

Hence we can write

BT = D
�1
Jn (11)

BP = r⇥D
�1
Bn. (12)

Apart from magnetic fields, other examples involving this operator corre-
spond to finding a stream function for a scalar vorticity on the surface (e.g.
Kimura and Okamoto (1987); Boatto and Dritschel (1957)).

Secondly, let L be a derivative operator parallel to the surface:

Lf ⌘ r⇥ (frr) or r⇥ (frz). (13)

This operator will be useful in defining scalar potentials for the toroidal and
poloidal fields.

Note that we are not expressing L in terms of the unit normal n̂, as in
Lf = r⇥f n̂. We avoid using n̂ because there is an ambiguity in calculating
the vector r⇥ n̂ (see Appendix 2). The curl of the unit normal depends on
how n̂ is extended into a vector field outside S. There is always a natural
extension for which r ⇥ n̂ = 0, but simple examples exist of other exten-
sions where the curl is non-zero. This di�culty should not cause problems
in Cartesian or spherical geometries, but must be considered in the more
arbitrary geometries we discuss later.

2.2 Toroidal and poloidal fields in planar and spherical
geometries

Let’s consider in detail how the toroidal and poloidal fields work in Cartesian
and spherical coordinates. One can show that functions T and P (the toroidal
and poloidal flux functions) exist where

BT ⌘ LT (14)

BP ⌘ r⇥ LP. (15)
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The two operators introduced here combine to give the two dimensional
surface Laplacian �k: for example (with rr = r̂)

DLP = r̂ ·r⇥ (r⇥ r̂P ) = r̂ ·
�
rr · r̂P �r

2
r̂P

�
(16)

= ��kP. (17)

We can employ the functions P and T to find suitable vector potentials
of the poloidal field BP = r⇥ LP and the toroidal field BT = LT :

AP = D
�1
Bn = LP ; (18)

AT = T r̂. (19)

On each surface the functions P and T are solutions of a Poisson equation.
As DL = ��k we have

�kP = �Bn; (20)

�kT = �Jn. (21)

From equation (20) and equation (21), we can then find Green function
solutions for P and T . For planes,

P (x, y) = �
1

2⇡

Z
Bz(x

0) ln |x� x0
| d

2
x
0; (22)

T (x, y) = �
1

2⇡

Z
Jz(x

0) ln |x� x0
| d

2
x
0
. (23)

The vector potential LP+T r̂ corresponding to these potentials is equivalent
to the winding gauge given in Prior and Yeates (2014).

For spheres (with the conditions that net radial field Br and net radial
current Jr both vanish),

P (✓,�) = �
1

4⇡

Z
Br(x

0) ln
1� cos ⇠

2
d
2
x
0; (24)

T (✓,�) = �
1

4⇡

Z
Jr(x

0) ln
1� cos ⇠

2
d
2
x
0
. (25)

where
cos ⇠ = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �

0) (26)

is the spherical distance between (✓,�) and (✓0,�0) (Kimura and Okamoto,
1987).
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Finally, note that all of the derivatives in the above equations only depend
on surface coordinates. The normal derivatives (@/@z or @/@r) come into play
when we calculate the components of BP parallel to a surface. For example,
in spherical geometries one finds

(BP ✓, BP �) = rk
@P

@r
=

✓
1

r

@

@✓
,

1

r sin ✓

@

@�

◆
@P

@r
. (27)

We next list some important properties of the decomposition, derived for
the spherical case. Planar geometries will give identical results.

2.3 Orthogonality

The poloidal and toroidal fields are orthogonal in the sense that over surfaces
z = const. or r = const.

Z
BT ·BP d

2
x = 0. (28)

To see this, note that on each surface r = constant,

BT ·BP = BT ·rk
@P

@r
= rk ·

@P

@r
BT . (29)

But the integral of a 2-divergence over a closed compact surface is zero, by
the two dimensional analogue of the Gauss theorem. For the planar case, we
can require that BT and BP fall o↵ faster than r

�1/2 as r ! 1, to insure
that the boundary integral converges to zero.

As a consequence, the magnetic energy divides neatly into poloidal and
toroidal contributions: B2 = B

2
P +B

2
T .

2.4 Helicity inside a magnetic surface

First consider the total helicity inside some magnetic surface (whereB·n̂ = 0)
at r = R. (For all space, we can let R ! 1 with |B| dropping su�ciently
fast at infinity, |B| ⇠ r

�2�✏). By specifying an outer magnetic surface, we
ensure that all magnetic field lines close upon themselves (or if ergodic, come
arbitrarily close to closing upon themselves). Then the helicity H measures
the net linking of all pairs of field lines.
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The cross helicity of two fields B1 and B2, both having magnetic surfaces
at r = R, can be written as

H(B1,B2) =

Z
A1 ·B2 d3

x =

Z
A2 ·B1 d3

x, (30)

Two toroidal fields do not link each other.
Z

AT1 ·BT2 d3
x =

Z
T1r̂ ·BT2 d3

x = 0, (31)

as the toroidal field has no component perpendicular to the boundary. Note
that adding a gradient field to AT1 makes no di↵erence:

Z
r� ·BT2 d3

x =

I
�r̂ ·BT2 d

2
x = 0, (32)

In particular, the linking of a toroidal field with itself (its self helicity) always
vanishes.

For Cartesian and spherical geometries two poloidal fields do not link
each other either; for example

H(BP1,BP2) =

Z
LP1 ·BP2 d3

x =

Z
LP1 ·

✓
rk

@P2

@r
+ r̂B2n

◆
d3
x

=

Z
LP1 ·

✓
rk

@P2

@r

◆
d3
x =

Z
(r⇥ P1r̂) ·

✓
rk

@P2

@r

◆
d3
x

=

Z
r ·

✓
P1r̂ ⇥rk

@P2

@r

◆
d3
x =

I
r̂ · P1r̂ ⇥rk

@P2

@r
d2
x

= 0. (33)

For a single field B = BP +BT ,

H(B,B) = H(BP ,BT ) +H(BT ,BP ) = 2H(BP ,BT ). (34)

In summary, helicity can be interpreted as the net linking of poloidal and
toroidal fields (see figure 1):

Theorem Consider a magnetic field B = BT + BP in a region V sur-
rounded by magnetic surfaces. Assume that V is either 1) all space, 2) a half
space bounded by a plane, 3) a layer bounded by two planes, 4) the interior
or exterior of a sphere, or 5) a spherical shell bounded by two concentric
spheres. Then

10



Figure 1: Toroidal field (parallel to the surface) linking poloidal flux (piercing
the surface).
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1. A purely poloidal field (T = 0) has H(BP ,BP ) = 0.

2. A purely toroidal field (P = 0) has H(BT ,BT ) = 0.

3. In general, the helicity equals the linking of the toroidal and poloidal
fields,

H(B,B) = 2

Z

V
LT · LP d3

x. (35)

2.5 Helicity of open fields

Suppose we wish to compute the helicity in a volume not bounded by a
magnetic surface. Then field lines cross the boundary and we need to think
carefully about how to define linking of field lines which are not closed. We
could simply give the linking of poloidal and toroidal flux, as in equation (35).
The relative helicity integral provides another method of defining the helicity
of open fields, by measuring how much currents within the volume twist and
intertwine the field lines. For boundaries which are planar or spherical, it
gives the same result as calculating the linking of poloidal and toroidal fields,
as we will show.

Let the volume in question be V , with space external to V labelled as
Vext. Let the magnetic field be labelled B within V , and Bext outside V . We
define a reference field to be the potential (or vacuum) field Bpot inside V

with the same external field Bext in Vext. We can now compare the helicity
of all space calculated both for the real field and the reference field, and take
the di↵erence. One can readily show that this di↵erence is independent of
all details of the external field. Symbolically, we write

HR(B) = H({B,Bext})�H({Bpot,Bext}). (36)

The potential field is chosen as a reference as it has minimal structure, and
minimizes the energy given the boundary data B · n̂.

The potential field is purely poloidal, as it has no currents. As poloidal
fields do not link themselves inside a sphere, the reference helicity
H({Bpot,Bext}) vanishes for the part of the integral inside V . Thus

H({Bpot,Bext}) = 2

Z

Vext

LText · LPext d
2
x. (37)
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If we subtract this from H({B,Bext}), we obtain an integral purely within
V :

HR(B) = 2

Z

V
LT · LP d

2
x. (38)

So we can still interpret relative helicity as being simply the linking of toroidal
and poloidal fields.

Note that, from the definition of relative helicity, if we divide space into
two volumes V and Vext, then the helicity of all space equals the sum of the
two relative helicities in each volume, plus a term giving the linking of the
two potential fields Bpot and Bpot,ext:

H({B,Bext}) = HR(B) +HR(Bext) +H({Bpot,Bpot,ext}). (39)

However, in the case where the boundary surfaces are planar or spherical,
the last term vanishes, because the potential fields on either side of the
boundary do not have toroidal components. Thus the relative helicity is
additive, H({B,Bext}) = HR(B) +HR(Bext).

For less symmetric boundaries, however, the linking of the potential fields
may not vanish. Thus the relative helicity will not be additive. Is there a
generalized definition of helicity which will sum properly in the asymmetric
case?

2.6 The Poloidal and Toroidal Fields of a single flux
element

Helicity is often described in terms of the mutual linking of pairs of flux
elements. In order to better understand how the P–T decomposition works
in relation to helicity, it will be useful to describe the toroidal and toroidal
fields of flux elements.

Consider a magnetic field comprising a single thin tube of flux � which
passes through the z = 0 plane near the origin. For simplicity the cross–
section of the tube will be taken to be a small square of side a ⌧ 1. The
field only has components in the y and z directions, and follows the curve
C(z) = (0, bz, z):

B(x, y, z) =
�

a2

(
(0, b, 1) |x|  a/2 and |y � bz|  a/2

0 otherwise.
(40)
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Figure 2: The toroidal function T (x, y) generated by a flux tube passing
through the origin slanted in the y direction. Blue denotes positive and
amber negative. The flux tube moves in a positive (anti-clockwise) direction
about point 1 and a negative (clockwise) direction about point 2.

From the Green function solution, equation (22), we can solve for the
poloidal flux function: for positions x = (x, y, z) with |x� C(z)| � 1,

P (x, y, z) = �
�

2⇡
ln |x� C(z)| . (41)

The sources for the toroidal flux function are the electric currents on the
boundary of the tube. Thus at z = 0 Jz = By(�(x+a/2)��(x�a/2)). Then
equation (23) gives a dipole function (with r

2 = x
2 + y

2) (see figure 2)

T (x, y, 0) = �b
�

2⇡

x

r2
. (42)

Outside of the tube, the total magnetic field vanishes, but the individual
poloidal and toroidal components do not vanish: they are equal and opposite.
The toroidal field outside of the tube at z = 0 is (see figure 3)

BT = LT =
b�

2⇡r4
(2xy, y2 � x

2). (43)

The poloidal field is BP = r
@P
@z = �BT outside of the tube. Inside of the

tube, the toroidal lines close upon themselves. The poloidal lines rotate into
the vertical direction and leave the plane.

14



x

y

Figure 3: The toroidal fieldBT (x, y) generated by a flux tube passing through
the origin slanted in the y direction.
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The poloidal vector potential for a flux tube crossing the z = 0 plane at
the origin is

AP = LP =
�

2⇡r
�̂ (44)

The poloidal vector potential tells us the angular direction about the flux
tube; in particular, given a second flux tube moving with velocity v, AP · v
gives the rate at which the second tube encircles the first.

The toroidal vector potential generated by the tube crossing at the origin,
AT = T (x, y)ẑ, reverses this picture. Here, if the central flux tube crosses
the z = 0 plane at a slant, then the scalar function T (x, y) tells us whether
this central flux tube is rotating in a clockwise or anti-clockwise direction
about (x, y), and at what rate this rotation happens (see figure 2). Note that
equation (38) can be integrated by parts to read

HR(B) = 2

Z

V
TBn d3

x. (45)

In this expression for the helicity, for each flux element Bn(x, y, z)dx dy the
function T (x, y, z) tells us the net amount that other flux at the same z plane
rotates about the flux element.

A description of poloidal and toroidal fields in terms of di↵erential forms
is given in Appendix 1.

3 Poloidal and toroidal fields in asymmetric
geometries

We now consider geometries with less symmetry than the planar or spherical
cases. Specifically, we will consider volumes bounded by any simply con-
nected compact surface. The toroidal field part will emerge almost as before,
but the poloidal part will require some changes in its description. We start
with the requirement that the poloidal field carries all of the perpendicu-
lar flux through boundary surfaces, while the toroidal field carries all of the
perpendicular current, as in equations (6) and (7).

Fill space with a set of nested simply connected surfaces labelled by the
parameter w (i.e. w = constant on each surface). We employ a coordi-
nate system (u, v, w) (which need not be orthogonal), so that each surface

16



is parametrised by coordinates u and v. Given a w surface S, we again de-
fine the operator D to be the normal component of the curl: for example,
DBT = Jn.

Suppose we have some boundary function f defined on S, and wish to
find the inverse of the D operator, i.e. find a vector field V where DV = f .
A constraint comes from Stoke’s theorem: for any closed curve C on the
surface S bounding a region A,

I

C

V · d` =

Z

A

f d
2
x. (46)

The value of the circulation equals the area integral on one side, but also
the negative of the area integral on the other side. Thus in order to have a
solution, the sum of the area integrals on the two sides, i.e. the integral over
all of S, vanishes. Hence the boundary data must satisfy the condition

Z

A

f d
2
x = 0, (47)

as expected for the normal components of electric currents, magnetic fields
or vorticity.

3.1 The toroidal field

On each w surface we define the toroidal field to be the inverse curl of the
normal current:

BT = D
�1
Jn. (48)

As the toroidal field lies within the w–surface, all field lines close upon
themselves. We again write BT = LT = r ⇥ Trw, with vector potential
AT = Trw.

3.2 The poloidal field

We can define the poloidal field as whatever else remains after subtracting
the toroidal field:

BP ⌘ B�BT . (49)

This ensures that equations (6) and (7) still hold; in particular BPn = Bn

and DBP = 0.

17



Note that the components of BP parallel to a w surface form a 2-gradient.
To see this, the circulation of BP around any closed curve in the surface must
vanish (by Stoke’s theorem it equals the perpendicular current JPn contained
inside, but the poloidal field has no perpendicular current).

Unfortunately, the vector potential will be more complicated than in the
symmetric case. As in the preceding section we first try a vector potential of
the form

eA = D
�1
Bn. (50)

But this is not enough! The curl of this vector field may not be a gradient in
the two directions parallel to the surface. In this case taking the curl again
would give a non-zero normal current, eJPn 6= 0. In other words an unwanted
toroidal field has appeared. We note that

JPn = n̂ ·r⇥ (r⇥ eA) = �n̂ ·�eA. (51)

For spherical coordinates, one may verify that the normal Laplacian n̂·� of eA
vanishes, as eA has no radial component and is divergence free. However, for
other compact simply connected geometries with varying surface curvature
this vanishing will not be guaranteed.

Thus we need to include an additional term: letting eB = r⇥ eA, let

BP = eB+BS (52)

where BS is a toroidal field with an equal but opposite undesired perpendic-
ular current:

DBS = �DeB = �Dr⇥D
�1
Bn. (53)

This additional field will be su�cient to determine B. To see this, note that
eB + BS has the correct boundary data Bn and Jn. If anything additional
were added to B, it would have to be a divergence-free gradient field rk 

parallel to the nested surfaces. Hence �k = 0 which has only constant
solutions for simply connected compact surfaces.

We can call this additional toroidal field the shape term, as it arises be-
cause of asymmetries in the shapes of the nested surfaces, and their interac-
tion with the distribution of normal flux.

We can choose the vector potential for the shape term to be perpendicular
to the nested surfaces:

AS = TSrw. (54)
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3.3 Calculating the surface vector potential

Calculating eA = D
�1
Bn will in general require numerical methods. Suppose

we approximate the surface S as F polygonal faces, with a total of E edges
and V vertices. We will show that the equations rk · eA = 0 and D eA = Bn

determine the components of eA along each edge. From this information,
interpolation can be employed to find both components of eA everywhere on
the surface.

Suppose face i has n edges of length `ij, j = 1, . . . n, orientation êij, and
area Ai . Then the circulation theorem gives for face i

nX

j=1

eA · êij`ij = BniAi. (55)

This gives F equations. However, by Stoke’s theorem (or by the absence
of magnetic monopoles), the total circulation must be zero for a simply con-
nected surface; i.e.

R
Bn d

2
x = 0. The net Bn for face i = F equals the

negative of the sum of Bn for all the other faces. Thus one of the face equa-
tions is redundant; we need only solve F � 1 equations to fix the circulation
for all F faces.

Next, the divergence-free condition can be implemented at each vertex.
Consider a particular vertex Vi and the set of edges joining this vertex. Sup-
pose we create a new polygonal region Ri containing the vertex by joining
the midpoints of these edges. Then we can require that the net flux of eA
into this region Ri vanish, i.e.

R
Ri

eA · n̂ d` = 0 (here n̂ is in the surface
perpendicular to the boundary of Ri).

Again one of the divergence equations will be redundant as the total two-
divergence must be zero; we only need V � 1 equations. In total we have
F + V � 2 equations. By Euler’s theorem for a simply connected surface the
number of edges is

E = F + V � 2. (56)

Thus we have just enough equations to determine the components of eA along
each of the E edges.
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3.4 Orthogonality

The poloidal and toroidal fields will still be orthogonal: as BP is still a
two-gradient rk in each surface, we have

Z
BT ·BP d

2
x =

Z
BT ·rk d

2
x =

Z
rk ·  BT d

2
x = 0. (57)

3.5 Helicity inside a magnetic surface

As the helicity inside a magnetic surface (say the outermost nested surface)
is gauge invariant, we are free to employ the gauges defined in sections (3.1)
and (3.2). To recapitulate,

B = BT +BP ; BP = r⇥ (AS + eA); BT = r⇥AT ; (58)

A = AT +AP = AT +AS + eA; (59)

AT = Trw; AS = TSrw; eA = D
�1
Bn. (60)

First note that some combinations of fields and vector potentials integrate
to zero. Given that AT and AS are normal to the surface, and eA is parallel
to the surface, Z

AT ·BT d3
x =

Z
AS ·BT d3

x = 0 (61)

Also, Z
eA ·BP d3

x = 0 (62)

since BP parallel to the surface is a gradient (as in equation (33)).
We are left with

Z
A ·B d3

x =

Z ⇣
(AT +AS) ·BP + eA ·BT

⌘
d3
x (63)

=

Z ⇣
(BT +BS) ·AP + eA ·BT

⌘
d3
x (64)

= 2

Z
eA ·BT d3

x+

Z
eA ·BS d3

x, (65)

where BS = r⇥AS is the shape term. Thus, in addition to the usual linking
of toroidal and poloidal fields, there is an extra term involving the linkage of
the poloidal field with its shape term.
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In general vector potentials are only defined up to a gauge transforma-
tion. In the poloidal-toroidal decomposition, however, we have specified that
parallel to each surface w = const., we have Ak = eA. Thus

rk ·Ak = 0. (66)

Recall that eA is unique (see section 3.3). Thus this condition uniquely defines
A, apart from the addition of a gauge term r (w) depending on w alone.

Note that the integral of A · B within any level w surface w = w0 is
una↵ected by r (w):

�

Z
A ·B d3

x =

Z
r ·B d3

x =

I

w=w0

 B · n̂ d
2
x (67)

=  (w0)

I

w=w0

B · n̂ d
2
x = 0 (68)

as the net flux through a surface is zero. Similarly, the integral will be
gauge-invariant between two surfaces w = w1 and w = w2.

3.6 Helicity of open fields

The relative helicity measures linking generated by currents within a volume,
and as such will include the linking of poloidal and toroidal flux. However,
it misses out on any contribution from interaction between the shape of the
volume and the poloidal flux distribution. Thus it is useful to define a helicity
(the absolute helicity) which includes the shape term. Our decomposition
naturally leads to a decomposition of the vector potential consistent with
the condition (66). With this condition, the linking of poloidal and toroidal
flux plus linking of the poloidal flux with itself via the shape vector becomes
a simple integral of A ·B.

We assume that the volume V lies inside a w surface. Thus we define

HV ⌘ 2

Z
eA ·BT d3

x+

Z
eA ·BS d3

x. (69)

As in (65) we have

HV =

Z
A ·B d3

x (70)

as long as A satisfies condition (66).
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4 The flux of helicity through the boundary

The magnetic helicity in a volume changes due to resistivity and flux of he-
licity through the boundary. The generalized helicity based on the poloidal–
toroidal decomposition obeys a simple helicity evolution equation very similar
in form to that for the relative helicity in planar or spherical geometries.

The time derivative is, using an integration by parts

dHV

dt
=

Z

V

✓
@A

@t
·B+

@B

@t
·A

◆
d3
x (71)

= 2

Z

V

@B

@t
·A d3

x+

I

S

@A

@t
⇥A · n̂ d

2
x. (72)

The last term in (72) vanishes as a consequence of the gauge condition
(66)(see Appendix 3).

By the Maxwell equations dB/dt = �r ⇥ E for electric field E. Also,
only eA is parallel to the surface.Thus equation (72) now gives

dHV

dt
= �2

Z

V
r⇥ E ·A d3

x (73)

= �2

Z

V
E ·B d3

x+ 2

I

S

eA⇥ E · n̂ d
2
x, (74)

using an integration by parts. The first term is the dissipation term (e.g.
with E ·B = ⌘J ·B) and the second gives flux across the boundary.

For planar or spherical boundaries this result is identical to the relative
helicity flux. In general terms, equation (74) extends the flux equation to all
simply-connected boundaries.

Suppose the magnetic field evolves due to an ideal fluid flow with velocity
V. Then the electric field vector can be written E = B⇥V. As an example,
consider magnetic fields in the atmosphere of the sun (corona), where the
field lines are loops with endpoints in the surface (photosphere). We will let
V be the interior of the sun below the photosphere, with n̂ pointing outward.
if there is a fluid flow parallel to the surface, then the endpoints will move
around each other, tangling up the field lines above. This will transfer helicity
between the interior and the coronal field. Here the second term in (74) gives

dHV

dt
= 2

Z ⇣
eA ·V

⌘
B · n̂ d

2
x. (75)
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On the other hand, if the flow is perpendicular to the surface, helical field
may rise into the corona from below. In this case we have

dHV

dt
= �2

Z ⇣
eA ·B

⌘
V · n̂ d

2
x. (76)

4.1 Self and mutual winding terms

As a minimum, any definition of helicity should have a simple topological
meaning. A reasonable requirement is that the helicity reduces to a col-
lection of self winding and mutual winding terms when the field is divided
into discrete flux elements (Berger, 1999; Longcope, Ravindra, and Barnes,
2007).Suppose we divide a magnetic field into N flux tubes, where tube i has
net flux along its axis �i. Taken individually, a flux tube will have helicity
due to its internal twist Ti and the writhe Wi of its axis: Hi = (Ti +Wi)�2

i

(Berger and Prior, 2006). Also, tubes i and j may link or wind about each
other through Wij turns (Prior and Yeates, 2014). This will add a mutual
contribution Hij = Hji = Wij�i�j.

In total, we have

HV =
NX

i=1

(Ti +Wi)�
2
i +

NX

i=1

NX

j=1,j 6=i

Wij�i�j, (77)

Next suppose that the flux tubes have endpoints on a boundary or bound-
aries. The winding numbers (Ti+Wi) andWij are topological invariants when
the endpoints do not move. The time derivative of these quantities can then
be written

dHV

dt
=

NX

i=1

!i�
2
i +

NX

i=1

NX

j=1,j 6=i

!ij�i�j, (78)

where !i = d(Ti +Wi)/dt arises from the rotations of the two foot points of
flux tube i, and !ij = dWij/dt gives the sum of the rotations of the i foot
points about the j foot points. We will call these spin and orbit terms.

4.2 Planar boundaries

Consider just two foot points. For a planar boundary, !12 = 1
2⇡ ✓̇12, the

rotation of the relative position vector between the two points. For more
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complicated surfaces, however, there is no such obvious definition for this
rotation. What we need to do is find a method of defining !12 for arbitrary
surfaces.

Suppose foot point 1 stays at rest at position x1. The orbit term involves
some sort of linear functional on the velocity V2 of foot point 2 at position
x2 (a distance r12 away from point 1). We can write this as

!12 = �eA(x2) ·V2. (79)

For a plane, the vector potential eA just points in the angular direction ✓̂1(x2)
(as in equation (44), where we had x1 = (0, 0)):

eA(x2) =
�1

2⇡r12
✓̂1(x2) (80)

For other surfaces we need to find eA (see equation (50)) to define the orbit
term.

Meanwhile, !1 gives the spin term for foot point 1. We imagine the
foot point to be a small but finite disk. A planar geometry allows a simple
definition, i.e. rotation rate of the disk relative to some fixed direction. Part
of this spin may be intrinsic - i.e the foot point rotates even without its centre
moving. Another part arises from the motion of the foot point around the
plane, e.g. in a circular track. Can we come up with an equivalent definition
that generalizes to arbitrary curved surfaces?

One way to do this is to compare two types of motion. We will call these
‘forward facing transport’ and ‘parallel transport‘. Consider a person walking
in a circular path on a flat surface. If she executes forward facing transport
she will always face in the direction she is walking. Thus when walking around
a circle she will rotate once. A person executing parallel transport always
faces in the same direction. Thus following a circular path would require
some sideways movement and backwards movement, but no rotation. The
spin term then comes from comparing the orientation reached after forward
facing transport with the orientation reached after parallel transport. The
angle between the two orientations reached after following a curve is called
the ‘geodesic deviation‘ in di↵erential geometry literature. (Perhaps this
should have been more appropriately termed the ‘non-geodesic deviation’, as
it measures the deviations of an arbitrary curve away from being geodesic.)
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4.3 Spherical surfaces

The next step in complexity is the sphere. Here we can imagine that foot
point 1 is at the North pole of a sphere of radius R with very small area
A1. To obtain a vector potential, however, there needs to be a return flux;
otherwise we would have monopoles inside the sphere. A successful method
of placing the return flux is to spread it evenly in area (Campbell and Berger,
2014), i.e., the radial magnetic field due to foot point 1 is (as a function of
spherical coordinates (✓,�))

B1(✓,�) = �1

(
1
A1

�
1

4⇡R2 inside footpoint 1

�
1

4⇡R2 outside footpoint 1
. (81)

Employing Stoke’s theorem, the vector potential is

eA(✓,�) =

✓
1 + cos ✓

2

◆
�1

2⇡R sin ✓
�̂, (82)

consistent with 24 and 25.
Suppose foot point 2 is located at co-latitude ✓2. Also suppose that the

two foot points join as endpoints of one flux tube, so �2 = ��1. If the sphere
solidly rotates through 2⇡, there should be no net helicity flux. Foot point
1 makes one complete rotation, providing a helicity flux of �H = ��2

1. If
foot point 2 executes facing forward motion, then its net spin is given by the
geodesic curvature of a latitude line at ✓2:

Z 2⇡

0

!1d� = cos(✓0) (83)

And in fact if you do it this way, using equation 82, all the terms cancel
nicely:

�H = �2
1


�1� cos(✓0) + 2

✓
1 + cos ✓0

2

◆�
; (84)

= 0. (85)

4.4 Asymmetric surfaces

Next consider an arbitrary simply connected surface. Our method will be to
require that a flux loop beginning and ending at the surface will not acquire
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any helicity if one end (i.e. one foot point) stays at rest, apart from perhaps
a spin through 2⇡, while the second foot point moves around a closed path.
We have three terms:

1. The orbit term depends on
R eA · dl around the path, which in turn

depends on the distribution of return flux.

2. foot point 2 spins according to the geodesic curvature of its path.

3. foot point 1 rotates by 2⇡.

The result should be no net helicity flux.

We need a method of obtaining the return flux as in equation 81. Instead
of thinking of the return flux being distributed evenly in area, we could
think of it being distributed proportional to the local Gauss curvature. As
the curvature of a sphere is uniform, these two methods give the same result.
However, for other manifolds, the two methods di↵er. Here we employ the
Gauss-Bonnet theorem (Burago, 2014) to show that distributing the return
flux with curvature gives the correct result. This theorem states that the
geodesic curvature of a closed curve on a manifold (essentially, how much
the tangent vector to the curve rotates with respect to nearby geodesics) is
simply related to the integral of the Gauss curvature of the region in the
surface encircled.

Gauss–Bonnet Theorem: Let �(s) be a closed curve on a surface S which
encircles in a right–handed sense the simply-connected region A (s is ar-
clength along the curve). Let K(x) be the Gauss curvature at point x in M .
Also let kg(s) be the geodesic curvature at a point on �(s). Then

Z

A

K(x)d2
x+

I

�

kg(s)ds = 2⇡. (86)

Furthermore, for an entire compact simply-connected surface S, we have
Z

S

K(x) = 4⇡. (87)

Since the curvature of any simply connected closed surface is fixed at
K = 4⇡, we can recast equation 81 as

B1(✓,�) = �1

(
1
A1

�
K(x)
4⇡ inside footpoint 1

�
K(x)
4⇡ outside footpoint 1

. (88)
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For example, consider the case where S is a cube, and place footpoint 1
at one of the corners. Each corner has total curvature Kc = 4⇡/8 = ⇡/2.
The return flux corresponding to this is �ret = ��1/8. Suppose footpoint 2
travels around a curve which goes around the corner adjacent to footpoint 1.
It can do this by making three right angled turns (crossing an edge from one
cube face to another does not count as a turn). Thus its spin is 3/4. Place
flux tube 1 at the corner and let everything go around one complete circuit.
Spin 1 = 1, Spin 2 = 3/4, and the orbit term is 2(1-1/8). Thus the helicity
flux vanishes as it should:

�H = �2


�1�

3

4
+ 2

✓
1�

1

8

◆�
; (89)

= 0. (90)

5 Conclusions

We have shown how the poloidal–toroidal decomposition of magnetic fields
can be extended to non-symmetric domains. The domains are foliated by
nested surfaces. A key element is finding the unique toroidal field BT =
D

�1
Jn parallel to the surfaces corresponding to the normal current, and

similarly the unique solenoidal vector potential eA = D
�1
Bn corresponding to

the normal field. Such decompositions may help in understanding equilibria
and evolution of magnetic fields confined to domains with boundaries lacking
spherical or planar symmetry.

An absolute form of the magnetic helicity was found which measures the
linking between the toroidal and poloidal fields. This absolute helicity equals
the relative helicity in planar or spherical volumes, but di↵ers in asymmetric
volumes. Its time derivative has an intuitive form in terms of the spin of
individual flux elements as well as the orbiting of pairs of elements.
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Appendix 1. Di↵erential Forms

We can describe these fields in terms of di↵erential forms. Given one of the
nested surfaces, let BT be a two–dimensional one–form living within this
surface. The condition r · BT = 0 corresponds to d(⇤BT ) = 0, where the
⇤ operator maps a form to its dual form. The exterior derivative dBT will
be a two form giving the normal component of the current. Similar remarks
apply to the vector potential AP , generally characterised as a one–form AP ,
where d(⇤AP ) = 0 and dAP gives the normal magnetic field.

The further requirement that the poloidal field have zero normal current
involves employing three dimensional forms. Suppose AP is a one form in
three dimensions, and the nested surfaces are level surfaces of coordinate w.
Then the perpendicular current is JPn = ⇤(dw^(d⇤dAP)). For non-spherical
geometries, this will not in general vanish, as discussed in the next section.

Appendix 2. The curious case of curl n̂

The fields BT and eA can be written in terms of the curl of scalar potentials
multiplying the unit unit normal, e.g. BT = r⇥T n̂. Thus, when evaluating
BT it is useful to know how to find the curl of the normal field. Some
geometry textbooks claim that, given a surface S, the curl of the unit normal
automatically vanishes, r⇥ n̂ = 0. Here we point out that the situation is
more complicated. In particular, the answer depends on the extension of n̂
away from the surface.

First consider a region of a flat plane, where the unit normal always points
in the same direction. One might first expect the unit normal to have zero
curl. For definiteness let the region S be in the x � z plane, with x > 0
and n̂ = ŷ. In cylindrical coordinates (r,�, z) we could also write n̂ = �̂ for
points on the surface S. However, while r⇥ ŷ = 0, one can readily calculate
r ⇥ �̂ = 1/r. Thus even in this simple case the answer depends on the
extension of n̂ away from S. Note that the surfaces � = constant are not
parallel to each other.

Can we always find an extension of n̂ near S where r ⇥ n̂ does vanish,
i.e. where n̂ is a gradient? Here the answer is yes. Suppose we employ a
parametrization (u, v) for the surface, specifying x(u, v), y(u, v), and z(u, v).
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At S, let

eu =
@x(u, v)

@u
; ev =

@x(u, v)

@v
; n̂|S =

eu ⇥ ev
|eu ⇥ ev|

. (91)

Near S we thicken the surface with a new coordinate �, where

x(u, v,�) = x(u, v) + �n̂(u, v). (92)

Close to S at � = 0 the surfaces of constant � will be approximately parallel
to S.

Then in a layer of finite thickness containing S, an extension of the unit
normal can be defined by

N̂ =
(eu + �@n̂/@u)⇥ (ev + �@n̂/@v)

|(eu + �@n̂/@u)⇥ (ev + �@n̂/@v)|
. (93)

At � = 0 we have the usual unit normal at S. One can then show that
N̂ = r� (for example by using the formula r� = eu ⇥ ev/J where J is the
Jacobian between Cartesian coordinates and (u, v,�)).

Appendix 3. A lemma concerning divergence
free vector fields within a surface

We now prove a simple theorem showing that the last term in equation (72)
vanishes if both A and its time derivative are divergence-free within the
surface.

Theorem
Let X and Y be arbitrary solenoidal vector fields tangent to a surface S.

Then I

S

X⇥Y · N̂ d
2
x = 0. (94)

Proof
As we are only considering the surface, not the whole volume, we are

free to employ the curl-free extension of the unit normal n̂ = N̂ introduced
in Appendix 2. By the Poincaré lemma we can always express these vector
fields in terms of scalar variables, i.e.

X = r⇥ fN̂ = rf ⇥ N̂; (95)

Y = r⇥ gN̂ = rg ⇥ N̂. (96)

31



Then

X⇥Y · N̂ =
⇣
rf ⇥ N̂

⌘
⇥

⇣
rg ⇥ N̂

⌘
· N̂ (97)

=
⇣
rf ⇥rg · N̂

⌘
N̂ · N̂ (98)

=
⇣
r⇥ frg · N̂

⌘
. (99)

Thus I

S

X⇥Y · N̂ d
2
x = 0 (100)

by Stokes’ theorem for a closed volume.
As both eA and its time derivative are divergence-free, the above theorem

ensures that the surface integral in equation (72) vanishes. Note that if
a di↵erent extension is employed, e.g. X = r ⇥ hrw then the potential
functions f and h will be related through a di↵erential equation involving
the details of rw. As a consequence the theorem will be much more di�cult
to prove. Since we are only interested in the neighbourhood of S, however,
we may use the more convenient coordinates involving � from (92).
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