PART II
NASA CR 114579
Available to Public

COMPENDIUM OF

. A ARINE LUMINESCENCE SIGNATURES
(Appendix C)

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the authors or organization that prepared it.
Prepared under Contract No. NAS2-6408 by
Baird-Atomic, Inc.
Bedford, Mass.

for
AMES RESEARCH CENTER

TABLE OF CONTENTS

Section		Page
1.	INTRODUCTION	$\mathrm{C}-1$
1.1	Plan of Compendium	$\mathrm{C}-1$
1.2	Instrumentation	$\mathrm{C}-2$
1.3	Site Descriptions	$\mathrm{C}-3$
2.	COMPENDIUM OF MARINE LUMINESCENCE SIGNATURES	$\mathrm{C}-16$
2.1	List of Figures	$\mathrm{C}-16$
2.2	Spectral Data	$\mathrm{C}-30$

LIST OF MAPS

Map A	Survey of Sampling Sites	C-4
Map B	Sample Collection Sites Near Gloucester Point, Va.	C-6
Map C	Sample Collection Sites Near Fort Lauderdale, Fla.	C-8
Map D	Sample Collection Sites Near Carrabelle, Fla.	C-10
Map E	Sample Collection Sites Near Galveston, Texas	C-12

1. INTRODUCTION

A principal goal of this project was the collection of a large body of excitation/emission spectra on representative seiwater samples. These data have been assembled in this Compendium of Spectral Data, which forms Appendix C of the Final Report.

1.1 Plan of Compendium

The spectra are ordered under the following general headings:
Chlorophyll in Seawater

Chlorophyll in Algal Cultures
Gelbstoff in Seawater

Additional Algal Culture Spectra
1.1.1 Chlorophyll in Seawater (Figures 1-70)

In this section are to be found separate excitation and emission spectra of natural water samples, excited in the neighbor hood of 460 nm and monitored in the region of 680 nm . The emission is due to chiorophyll a. The spectra are ordered in geographic groups according to site. Thus, Figures 1-10 have spectra from Cape Ann, Massachusetts. Figures ll-20 are from Gloucester Point, Virginia, etc. There are no spectra of Pacıfic waters because on-site measurements were not made.
1.1.2 Chlorophyll in Algal Cultures (Figures 71-91)

These laboratory cultures are excited and monitored in the same spectral regions as the seawater samples of the previous section. They are inserted here to allow comparison with the seawater spectra.
1.1.3 Gelbstoff in Seawater (Figure; 92-182)

In this section are to be found separate excitation/emission spectra of natural water samples, excited in the region of 350 nm and monitored at approximately 440 nm . This emission is primarily due to Gelbstoff, the
soluble decaying organic matter in natural waters. Pollutants may also contribute in this region. Samples mailed from the West Coast and Hawaii are included.
1.1.4 Additional Algal Culture Spectra (Figures 183-196)

In this section are to be found separate excitation/emission spectra of algal cultures excited and monitored at other wavelengths than in 1.1.2. The higher concentration of the samples allows observation of secondary spectra.

1. 2 Instrumentation

All data were taken on a modified Baird-Atomic Fluorescence Spectrophotometer, Model SF-100. The standard instrument incorporates a 150 -watt xenon source, two double monochromators and an RCA 1P28 detector. Modification consisted of the remounting of the IP28 together with an RCA C 31025 C in an external tube, which allows choice of detector. The C31025C, with a GaAs photocathode, allows efficient detection in the 680 nm region without ccoling. The standard wavelength range of the instrurnent, 220-700 nm, has been modified by the addition of a cam-spacer, !ocated in the sample compartment. When the spacer is inserted, the wavelength range is changed to $420-900 \mathrm{~nm}$.

All chlorophyll spectra were taken using the C 31025 C detector, emission spectra using the $420-900 \mathrm{~nm}$ range and excitation spectra the norisal wavelength range. All gelbstoff spectra used the lP28 and normal wavelength range.

All spectra in the compendium are uncorrected for instrumental dependence on wavelength. This correction applies mainly to the wavelength region below 300 nm on excitation and to peaks in the lamp spectrum, prinsipally at 470 nm , also seen in excitation.

The short wavelength cut-off of emission spectra corresponds to the onset of first order scattering. The cut-off on excitation spectra corresponds to second order scattering. In some cases this was removed with a filter.

For chlorophyll spectra the bandpass on excitation and emission was usually set at maximum, or 24 nm . For Gelbstoff spectra bandpass on excitation and emission was set at about 17 nm .
1.3 Site Descriptions

Samples from nine different geographic sites were measured and included in the Compendium of Data. The first five of these, covering the Atlantic and Gulf coasts, were covered on-site. Here measurements were made on chlorophyll and Gelbstoff, and on several algal cultures supplied by laboratories. The remaining four sites included three off the west coast and one several hmdred miles north of Hawaii. Lack of time and funding made it impossible to monitor these on-site; therefore samples were mailed to Bedford, and only Gelbstoff was monitored. The sites will be described in some detail in the following subsections. They are indicated on Map A.

1.3.1 Site A: Cape Ann, Massachusetts (University of Massachusetts Marine Station)

The laboratory is located on the western side of Cape Ann at Hodgkins Cove. Numerous measurements were conducted at the laboratory throughout the project. Representative data from several dates are included in the report.

The data of Figures 1, 2, 92 and 93 were taken on 2 March 1972 on water piped into the laboratory from Hodgkins Cove, a clean representative body of water. The water temperature was $0.9^{\circ} \mathrm{C}$, salinity 31.6 ppth, chlorophyll content $0.5 \mathrm{~g} / 1$.

The data of Figures 3 and 4 were taken on 4 December 1971, also on laboratory seawater. The water temperature was $6.1^{\circ} \mathrm{C}$, the salinity 29.8 ppth , and the chlorophyll content $0.74 \mathrm{~g} /$?

The data of Figure 94 were taken on 30 May 1972 on laboratory seawater.

The data of Figures 5-10 and 95-97 were taken on 18 August 1972 on samples collected by boat and returned to the laboratory for immediate
C-3

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR 童

study. The water temperature was $10.8^{\circ} \mathrm{C}$, the salinity 30.9 ppth , and the chlorophyll content $1.44 \mathrm{~g} / \mathrm{l}$. This sampling was undertaken near the end of a "red tide episode which had been quite severe. Figures 5 and 6 represent waters near the laboratory at the entrance to Hodgkins Cove. Figures 7 and 8 represent the water of Rockport Harbor. Figures 9 and 10 represent water at a dredge dumping site which had been noted for the strong red tide. No visible red tide was detected on the day of sampling. (Unfortunately the instrument was inoperative during the height of the episode.) This last sampling date was noteworthy for another reason: the water was unseasonally cold due to upwelling. By the 24 th of August the temperature had reached $20^{\circ} \mathrm{C}$.

Laboratory space and assistance in all phases of our work were provided by Dr. Charles Yentsch, Director of th• Marine Station. Dr. Clarice Yentsch provided the majority of the algal cultures documented in the Compendium.
1.3.2 Site B: Gloucester Point, Virginia (Virginia Institute of Marine Science)

The Virginia Institute of Marine Science (VIMS) is located at Gloucester Point on the York estuary of Chesapeake Bay. This was the site of successful measurements on an institute boat.

Measurements were made on 15 and 16 February 1972. Figures 11, 12, 98 and 99 describe data on water taken off the VIMS pier on 15 February. The data of Figures 13-20 and 100-103 were taken on 16 February at four sites ranging from the mouth of the York River up into Mobjack Bay. The sites are marked on Map B.

Station A is located at the head of Mobjack Bay, the confluence of several small rivers. There is no known source of pollution, and the bay is shallow (6 m). The water temperature was $6.7^{\circ} \mathrm{C}$, the salinity 18.9 ppth, and the chlorophyll $12 \mathrm{~g} / 1$ at the surface.

Station B is located at the mouth of Mobjack Bay on the north side of an underwater bar, York Spit. It is located in a fairway channel and has a

REPRODUCIBIIITY OF THE ORIGINAL PAGE IS POOR

depth of 8 m . The water temperature was $5.5^{\circ} \mathrm{C}$, the salinity 19.06 ppth , and the chlorophyll $112.5 \mathrm{gil}(\mathrm{surface})$.

Station D is located in the York River channel with a depth of 11 m . The water temperature was $5.8^{\circ} \mathrm{C}$ and the salinity 19.51 ppth. Unfortunately the chlorophyll measurements were not made.

Station E is located in the same channel further up the York River and has a depth of 20 m . The York River has a paper pulp mill twenty-five miles up at its head, two naval installations, a power plant, and an oil refinery. Thus, Station E and perhaps D are expected to have the greatest environmental strain. The water temperature was $6.0^{\circ} \mathrm{C}$, the salinity 19.64 ppth , and the chlorophyll content $39.7 \mathrm{~g} / \mathrm{l}$.

For other parameters see section 3.3 .3 of the body of this Final Report.

The on-site measurements were arranged through the cooperation of Dr. Paul Zubkoff, Chairman of the Department of Physiology. Mr. J. Ernest Warinner III assisted in collecting samples. He also provided mailed samples for an earlier study. The VIMS staff also provided several algal cultures for measurement in their laboratories.

1.3.3 Site C: Fort Lauderdale, Florida (Nova University Physical Oceanographic Laboratory)

This laboratory is located just south of Fort Lauderdale near the Atlantic Ocean. Samples were gathered and 3 and 4 April 1972 and measured at the Oceanographic Laboratory.

The data of Figures 21-32 and 104-114 were taken at a series of stations numbered 106 from out in the Gulf Stream into Port Everglades, as indicated on Map C. Stations 1-3 have typical near-shore Gulf Stream water with low productivity and high clarity. Stations 306 have increasing turbidity due to yellow numic acids draining out of Port Everglades via New River. The source of these yellow acids is the Everglades, through the drainage system. Prodectivity of these latter stations is high as a result of domestic pollution

(eutrophication) along the drainage basin. The w ter temperature at the dock was $20^{\circ} \mathrm{C}$; it was not measured in the Gulf Stream wh re it was certainly much lower. No salinity measurements were madi:. The chlorophyll content in the Gulf Stream was $0.19 \mathrm{~g} / 1$, while at the dock it was $2.9 \mathrm{~g} / 1$.

The data of Figures 115-122 were taken at four stations (designated 01-04) from beyond a sewage outfall, in toward the coast. This course is off Map C to the south. Only Gelbstoff measurements were made to determine if the outfall was visible. The outfall was never visible to the eye, so perhaps it was not operating.

Arrangements for these measurements were made by C. Yentsch, with the kind assistance of Dr. W. Richardson, Laboratory Director. C. Yentsch assisted in obtaining samples.
1.3.4 Site D: Carrabelle, Florida (Florida State University Marine Station)

The marine station is located in the panhandle of Florida on the Gulf of Mexico at Turkey Point, near Carrabelle. The water is sedimentary and shallow. Measurements were made in mid-April 1972.

The data of Figures $33-38$ and $123-130$ and 137 were made on 11 April 1972 from water collected from eight stations (designated l. . 8) on a transect extending out from the marint station along a ship channel. Station 1 was about four miles out, and the remainder were spaced evenly to the dock. Station 3 was at the end of the marked channel, and Station 8 was at the pier. Because the instrument was not functioning well due to power supply instability, not all samples were measured. Chlorophyll measurements were made only on samples from Stations 1,2 and 8. No temperature, salinity or chlorophyll data are available.

The data of Figures $39-52$ and $131-136$ were made from water collected 13 April 1972 on a trip around Dog Island. Nine stations are designated 31. . . D9. All stations are indicated on Map D. Because of the poor instrumental behavior, all chlorophyll measurements were made by front-surface

$$
\begin{aligned}
& \text { \$ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \\
& \omega \\
& \begin{array}{l}
\text { ฐ } \\
\vdots \\
\vdots \\
\ddots
\end{array} \\
& \begin{array}{cc}
\vdots \\
\vdots & \\
& \\
& \\
0
\end{array} \\
& 23
\end{aligned}
$$

measurements on filtered particulates. Gelbatoff measurements were made on the filtrate. Agair, not all samples were measured.

Arrangements for these measurements were made through Dr. Jack Winckester, Head of the Department of Oceanography at Flcrida State University in Tallahassee.

1.3.5 Site E: Galveston Bay (National Marine Fisheries Laboratory!

The Fisheries Laboratory is lowied near Galveston Bay. Laboratory measurementr were made on samples collect ed from nine stations in the bay, as designated on Map E. Measurements on 20 June 1972 at the entrance of Galveston Bay showed a water temperature of $30.0^{\circ} \mathrm{C}$, and a salinity of 23.0 ppth. No chlorophyll measurement was available. Tiese measurements are covered in Figures ; 3-7U and 139-147. The following station descriptions were furnished by Frank Marullo of NMFS/Galveston.

Station 1, Swan Lake, is an ideal nursery area with a depth of four feet. There is a ditch leading from a chemical plant into Swan Lake. The sample was taken near the entrance to Campbell Bayou.

Station 2 is near the ditch.
Station 3 is in Campbell Bayou, which is ten fee: deep.
Station 4 is in the Intercoartal Canal, depth 12 feet.
Station 5 is in the Texas City Ship Channel near the Nonsanto chemical plant and barge clock. The depth is 38 feet.

Station 6 is on the opposite side of the Texas City dike. No chemical pollution, good shrimp area, depth eight feet.

Station 7 is in Moses Lake, a good nursery area. This station is near a G.A.F. fim plant where the channel is 12 feet deep.

Station 8 is located in the bay outside Moses Lake, where the depth is 12 feet.

1
Map E: Sample Collection Sites Near Galveston, Texas

Station 9, in Dollar Bay, has a depth of four feet.

Arrangements for the use of laboratory facilities and a boat to collect samples was made by Mr. Robert Temple, Assistant Director of the Laboratory. Mr. Frank Marullo collected samples, and Mr. Neil Baxter provided the data on temperature and salinity.

1.3.6 Site F: Pacific Ocean--Southern California (University of California at Santa Barbara Marine Science Institute)

For this and the following three sites the samples were mailed to Bedford for delayed examination. Because we feel such measurements on chlorophyll are invalid, only Gelbstoff measurements were made.

Samples were collected on 12 September 1972 from five stations, labeled A-E, with the following descriptions:

Station A: Surface sample one-half mile off the beach, outside a kelp bed, with a slight oil slick on the surface. (Oil slick extends 2 miles off shore.) Temperature $17.0^{\circ} \mathrm{C}$, salinity 33.6 ppth .

Station B: Same as A, except one meter depth. Temperature $17.0^{\circ} \mathrm{C}$, salinity 33.6 ppth.

Station C: Surface sample, beyond the oil slick, about three miles offshore. Temperature $17.0^{\circ} \mathrm{C}$, salinity 33.6 ppth .

Station D: Surface sample 100 m offshore and in front of Goleth Slough mouth. Water brownish and somewhat turbid, 'Temperature $16.7^{\circ} \mathrm{C}$, salinity 33.6 ppth.

Station E: Surface sample in the kelp beds of Herdry's Beach. Depth here about 30 feet. Temperature $16.9^{\circ} \mathrm{C}$, salinity 33.6 ppth.

No chlorophyll data are available.

The sample collection was arranged by Dr. Robert Holmes, Director of the Institute.

1.3.7 Site G: Pacific Ocean--LaJolla, California (Scripps Institution of Oceanography)

Mr. Frautschy, Assistant Director of Scripps, kindly arranged to have samples sent from the ship E. B. Scripps while on a cruise near San Clemente Island. Eight samples were taken on 12 September 1972 and ten samples on 21 and 22 September 1972 at the following locations:

Sample	1	$33^{\circ} 22.0^{\prime} \mathrm{N} 118^{\circ} 11.0^{\prime} \mathrm{W}$
	2	$33^{\circ} 17.0^{\prime} \mathrm{N} 118^{\circ} 14.0^{\prime} \mathrm{W}$
	3	$33^{\circ} 19.0^{\prime} \mathrm{N} 118^{\circ} 14.0^{\prime} \mathrm{W}$
4	$33^{\circ} 21.8^{\prime} \mathrm{N} 118^{\circ} 17.0^{\prime} \mathrm{W}$	
5	$33^{\circ} 22.0^{\prime} \mathrm{N} 118^{\circ} 17.0^{\prime} \mathrm{W}$	
6	$33^{\circ} 21.5^{\prime} \mathrm{N} 119^{\circ} 2.3^{\prime} \mathrm{W}$	
7	$33^{\circ} 21.5^{\prime} \mathrm{N} 119^{\circ} 2.5^{\prime} \mathrm{W}$	
8	$33^{\circ} 22.5^{\prime} \mathrm{N} 118^{\circ} 35.1^{\prime} \mathrm{W}$	

Sample 9 | $32^{\circ} 38.0^{\prime} \mathrm{N} 117^{\circ} 15.0^{\prime} \mathrm{W}$ | |
| ---: | :--- |
| 10 | $32^{\circ} 41.0^{\prime} \mathrm{N} 117^{\circ} 39.0^{\prime} \mathrm{W}$ |
| 11 | $32^{\circ} 41.7^{\prime} \mathrm{N} 117^{\circ} 59.0^{\prime} \mathrm{W}$ |
| 12 | $32^{\circ} 44.0^{\prime} \mathrm{N} 118^{\circ} 21.3^{\prime} \mathrm{W}$ |
| 13 | $32^{\circ} 48.3^{\prime} \mathrm{N} 118^{\circ} 44.2^{\prime} \mathrm{W}$ |
| 14 | $32^{\circ} 53.0^{\prime} \mathrm{N} 119^{\circ} 05.5^{\prime} \mathrm{W}$ |
| 15 | $32^{\circ} 57.0^{\prime} \mathrm{N} 119^{\circ} 22.0^{\prime} \mathrm{W}$ |
| 16 | $33^{\circ} 02.0^{\prime} \mathrm{N} 119^{\circ} 43.3^{\prime} \mathrm{W}$ |
| 17 | $33^{\circ} 05.0^{\prime} \mathrm{N} 120^{\circ} 05.0^{\prime} \mathrm{W}$ |
| 18 | $33^{\circ} 32.0^{\prime} \mathrm{N} 122^{\circ} 02.0^{\prime} \mathrm{W}$ |

Only standard Gelbstoff measurements were made on these samples because they were cld when they arrived.
1.3.8 Site H: Hawaii (University of Washington Department of Eeanography)

Dr. J. Thomas arranged to have samples sent from a cruise of the R. V. Thompson in the North Pacific, at about $32^{\circ} \mathrm{N}, 155^{\circ} \mathrm{W}$, several hundred miles north of Hawaii.

The exact location of the sampling positions and supporting information on chlorophyll, temperature, salinity, etc., have not been available at the writing of this report. Only Gelbstoff spectra were taken. This infor mation will be added in the form of a replacement page when the information becomes available.

1.3.9 Site I: Corvallis (Oregon State University Department of Oceanography

Dr. H. Curl of Oregon State University arranged to have a sample of water sent from off the Oregon Coast. This sample was collected in late October 1972. Only Gelbstoff were taken. The exact location of sampling and other parameters are unknown.

CHLOROPHYLL IN SEAWATER

Cape Ann, Massachusetts
(University of Massachusetts Marine Station)

Fi :ure		
1	Laboratory Water:	Emission Excited at 476 nm
2		Excitation Monitored at 686 nm
3	Laboratory Water:	Emission Excited at 560 nm
4		Excitation Monitored at 685 nm
5	Hodgkins Cove Site:	Emission Excited at 458 nm
6		Excitation Monitored at 678 nm
7	Rockport Harbor Site:	Emission Excited at 458 nm
8		Excitation Monitored at 678 nm
9	Dredge Dumping Site:	Emission Excitsd at 458 nm
10		Excitation Monitored at 678 nm

Gloucester Point, Virginia
(Virginia Institute of Marine Science)

Gloucester Point Seawater: Emission Excited at 470 nm
Excitation Monitored at 680 nm

Chesajeake Bay, Station A: Emission Excited at 458 nm Excitation Monitored at 682 nm

Chesapeake Bay, Station B: Emission Excited at 458 nm Excitation Monitored at 682 nm

Chesapeake Bay, Station D: Emission Excited at 458 nv Excitation Monitored at 682 nm

Ohesapeake Bay, Station E: Emission Excited at 458 nm Excitation Monitored at 682 nm
(Nova University Physical Oceanographic Lahoratory)

Figure

21

Atlantic Ocean, Station 1: Emission Excited at 458 nm Excitation Monitored at 678 nm

Atlantic Ocean, Station 2: Emission Excited at 458 nm
Excitation Monitored at 675 nm

Atlantic Ocean, Station 3: Emission Excited at 468 nm Excitation Monitored at 675 nm

Atlantic Ocean, Station 4: Emission Excited at 460 nm Excitation Monitored at 679 nm

Atlantic Ocean, Station 5: Emission Excited at 468 nm
Excitation Monitored at 677 nm
Atlantic Ocean, Station 6: Emission Excited at 440 nm
Excitation Monitored at 677 nm
(Florida Starrabelle, Florida $\begin{aligned} & \text { Caniversity Majine Station) }\end{aligned}$
Gulf of Mexico, Station 1: Emission Excited at 440 nm
Excitation Monitored at 678 nm
Gulf of Mexico, Station 2: Emission Excited ai 440 nm
E.scitation Monitored at 678 nm

Gulf of Mexico, Station 8: Emission Excited at 458 nm
Excitation Monitored at 678 nm

CHLOROPHYLL IN SEAWATER (Continued)

Galveston Bay, Texas
(National Marine Fisheries Service)

Figure

Gulf of Mexico, Station Dl: Emission Excited at 464 nm

$$
\text { Excitation Monitored at } 682 \mathrm{~nm}
$$

Gulf of Mexico, Station D2: Emission Excited at 460 nm
Excitation Monitored at 682 nm
Gulf of Mexico, Station Dl, Filtered Particulates: Emission Excited at 459 nm

Excitation Monstored at 769 nm
Gulf of Mexico, Station D2,
Filtered Particulates: Emission Excited at 458 nm
Excitation Monitored at 680 nm
Gulf of Mexico, Station D3, Filtered Particulates:

Emission Excited at 465 nm
Excitation Monitored at 679 nm
Gulf of Mexico, Station D4,
Filtered Particulates:
Filtered Particulates: Emission Excited at 458 and 545 nm
Excitation Monitored at 607 and 678 nm
Gulf of Mexico, Station D5
Filtered Particulates: Emission Excited at 462 nm
Excitation Monitored at 679 nm
Gulf of Mexico, Station 1: Emission Excited at 458 nm

Gulf of Mexico, Station 2:
Excitation Monitored at 680 nm

CHLOROPHYLL IN SEAWATER (Continued)

Galveston Bay, Texas
(National Marine Fisheries Service)
Figure

57

Gulf of Mexico, Station 3:		Emission Excited at 460 nm Excitation Monitored at 680 nm
Gulf of Mexico, Station 4:		Emission Excited at 460 nm
		Excitation Monitored at 680 nm
Gulf of Mexico, Station 5:		Emission Excited at 460 nm
		Excitation Monitored at 680 nm
Gulf of Mexico, Station 6:		Emission Excited at 460 nr .
		Excitation Monitored at 680 nm
Gulf of Mexico, Station 7:		Emission Excited at 460 nm
		Excitation Monitored at 680 nm
Gulf of Mexico, Station 8:		Emission Excited at 460 nm
		Excitation Monitored at 680 nm
Gulf of Mexico, Station 9:		Emission Excited at 460 nm
		Excitation Monitored at 680 nm

CHLOROPHYLL IN ALGAL CULTURES

Nannochoris Atomus, Green Alga: Emission Excited at 440 nm
Excitation Monitored at 682 nm
Nannochloric Oculata, Green Alga: Emission Excited at 468 nm
Excitation Monitored at 683 nm

Emission Excited at 440 nm
Excitation Monitored at 687 nm

C-19

CHLOROPHYLL IN ALGAL CULTURES (Continued)

Figure

GELBSTOFF IN SEAWATER

Cape Ann, Massachusetts
(University of Massachusetts Marine Station)

Figure

Laboratory Water:
Emission Excited at 300 nm
Excitation Monitored at 430 nm

Cape Ann, Massachusetts
(University of Massachusetts Marine Station)
Figure

94

95
96
96
97
Laboratory Water:

Hodgkins Cove Site:

Dredge Dumping Site: Emission Excited at 458 nm
Kockport Harbor Site: Emission Excited at 350 nm
Excitation Monitored at 440 nm

Gloucester Point, Virgiria
(Virginia Institute of Marine Science)
Figure
98 Gloucester Point Water: Emission Excited at 340 nm

Gloucester Point Water:	Emission Excited at 340 nm
	Excitation Monitored at 450 nm
Chesapeake Bay, Station A:	Emission Excited at 350 nm
	Excitation Monitored at 440 nm
Chesapeake Bay, Station B:	Emission Excited at 350 nm
	Excitation Monitored at 440 nm
Chesapeake Bay, Station D:	Emission Excited at 350 nm
	Excitation Monitored at 440 nm
Chesapeake Bay, Station E:	Emission Excited at 350 nm
	Excitation Monitored at 440 nm

GELBSTOFF IN SEAWATER (Continued)

Fort Lauderdale, Florida
(Nova University Physical Oceanographic Laboratory)
Figure

104

Atlantic Ocean, Station 1:	Emission Excited at 340 nm
	Excitation Monitored at 440 nm
Atlantic Ocean, Station 2:	Emission Excited at 340 nm
	Excitation Monitored at 450 nm
Atlantic Ocean, Station 3:	Emission Excited at 340 nm
	Excitation Monitored at 440 nm
Atlantic Ocean, Station 4:	Emission Excited at 340 nm
	Excitation Monitored at 440 nm
Atlantic Ocean, Station 4:	Emission Excited at 340 nm
Atlantic Ocear, Station 5:	Excitation Monitored at 440 nm
Atlantic Ocean, Station 6:	Emission Excited at 340 nm
	Excitation Monitored at 450 nm
Ailantic Ocean, Station 04:	Emission Excited at 340 nm
	Excitation Monitored at 340 nm
Atlantic Ocean, Station 03:	Emission Excited at 340 nm
	Excitation Monitored at 440 nm
Atlantic Ocean, Station 02:	Emission Excited at 340 nm
	Excitation Monitored at 450 nm
Atlantic Ocean, Station 01:	Emission Excited at 340 nm
	Excitation Monitored at 440 nm

Carrabelle, Florida

(Florida State University Marine Station)
Figure

Gulf of Mexico, Station 1:	Emission Excited at 280 and 340 nm
	Excitation Monitored at 440 nm
Gulf of Mexico, Station 4:	Emission Excited at 280 and 360 nm
	Excitation Monitored at 440 nm
Gulf of Mexico, Station 5:	Emission Excited at 280 and 360 nm
	Excitation Monitored at 440 nm
Gulf of Mexico, Station 6:	Emission Excited at 280 and 360 nm
	Excitation Monitored at 440 nm
Gulf of Mexico, Station Dl,	Emission Excited at 280 and 360 nm
Filtered Particulates:	Excitation Monitored at 440 nm
Gulf of Mexico, Station D2,	Emission Excited at 380 anc 360 nm
Filtered Particulates:	Excitation Monitored at 440 nm
Gulf of Mexico, Station D4,	
Filtered Particulates	Emission Excited at 380 and 465 nm
	Excitation Monitored at 440 nm
Gulf of Mexico, Station 7:	Emission Excited at 280 and 360 nm
Excitation Monitored at 300 nm	

GELBSTOFF IN SEAWATER (Continued)

$$
\frac{\text { Gelveston Bay, Texas }}{\text { (National Marine Fisheries Service) }}
$$

Figure

$139 \quad$ Gulf of Mexico, Station 1: Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

Gulf of Mexico, Station 2:

Gulf of Mexico, Station 3:

Gulf of Mexico, Station 4:

Gulf of Mexico, Station 5:

Gulf of Mexico, Station 6:

Gulf of Mexico, Station 7:

Gulf of Mexico, Station 8:

Gulf of Mexico, Station 9:

Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm Emission Excited at 280 and 350 nm Excitation Monitored at 440 nm

(University of California Marine Science Institute)

Figure

148 Pacific Ocean-Scuthern California, Station A:

Emission Excited at 350 nm
Excitation Monitored at 440 nm

Pacific Ocean-Southern California,
Station E:
Emission Excited at 350 nm

$$
\text { Excitation Monitored at } 440 \mathrm{~nm}
$$ Excitation Monitored at 440 nm

Pacific Ocean-Sourthern California, Station B:

Emission Excited at 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Southern California, Station C: Emission Excited at 350 mm Excitation Monitored at 4.40 nm

Pacific Ocean-Southern California,
Station D: Emission Lxcited at 350 nm Excitation Monitored at 440 nm

LaJolla, California
(Scripps Institution of Oceanography)
Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Oc-an-Southern Californıa, Station 3:

Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

GELBSTOFF IN SEAWATER (Continued)

$$
\text { (Scripps } \frac{\text { LaJolla, California }}{\text { Institution of Oceanography) }}
$$

Figure
Pacific Ocean-Southern California, Station 4: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Southern California, Station 5: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

160 Pacific Ocean-Southern California, Station 6:

Emission Excited at 290, 350 nm
Excitation Monitored at 440 nm

161 Pacific Ocean-Southern California, Station 7:

Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

162 Pacific Ocean-Southern California, Station 8.

Emission Excited at 290, 350 nm
Excitation Moni tored at 440 nm

Pacific Ocean-Southern California, Station 9:

Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Southern California, Station 10:

Emission Excited at 290, 350 nm
Excitation Monitored at 440 nm

Pacific Ocean-Southern Salifornia, Station 1l:

Emission Excited at 290, 350 nm
Excitation Monitored at 440 nm

Pacific Ocean-Southern California, Station 12:

Emission Excited at 290, 350 nm
Excitation Monitored at 440 nm

GELBSTOFF IN SEAWATER (Continued)

$$
\text { (Scripps } \frac{\text { LaJolla, California }}{\text { Institution of Oceanography) }}
$$

Figure

Pacific Ocean-Southern California, Staicon 13:

Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Southern California,

Station 18:

Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Hawaii
(University of Washington Department of Oceanography)
Pacific Ocean-Hawaii, Station 1: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Hawaii, Station 2: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

GELBSTOFF IN SEAWATER (Continued)

Hawaii
(University oí Washington Department of Oceanography)

Figure

Pacific Ocean-Hawaii, Station 3: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

Pacific Ocean-Hawaii, Station 4: Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

	Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 4:	Emission Excited at 290, 350 nm Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 5:	Emission Excited at 290, 350 nm Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 6:	Emission Excited at 290, 350 nm Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 7:	Emission Excited at 290, 350 nm Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 8:	Errission Excited at 290, 350 nm Excitation Monitored at 440 nm
Pacific Ocean-Hawaii, Station 9:	Emission Excited at 290, 350 nm

Corvallis

(Oregon State University Department of Oceanography)

Pacific Ocean-Oregon:
Emission Excited at 290, 350 nm Excitation Monitored at 440 nm

ADDITIONAL ALGAL CULTURE SPECTRA

Figure

Nannochloris Atomus-Green Alga:	Emission Excited at 440 nm Excitation Monitored at 280 nr
Nannochloris Atomus-Green Alga:	Emission Excited at 290 nm
	Excitation Monitored at 280 nm
Nannochloris Atomus-Green Alga:	Emission Excited at 370 nm
	Excitation Monitored at 450 nm
Dunaliella-Green Alga:	Emission Excited at 288 nm
	Excitation Monitored at 351 nm
Dunaliella-Green Alga:	Emission Excited at 351 nm
	Excitation Monitored at 441 nm
Skeletonema Costatum-Diatom:	Emission Excited at 290 nm
	Excitation Monitored at 354 nm
Skeletonema Costatum-Diatom:	Emission Excited at 390 nm
	Excitation Monitored at 480 nm
Thalassiosira Fluviatilis-Diatom:	Emission Excited at 290, 354 nm
	Excitation Monitored at 440 nm
Thalassiosira Fluviatilis-Diatom:	Emission Excited at 375 nm
	Excitation Monitored at 450 nm
Gonyaulax Polyhedra-Dinoflagellate:	Emission Excited at 370, 390 nm
Gonyaulax Polyhedra-Dinoflagellate:	Emission Excited at 360 nm
	Excitation Monitored at 480 nm
Gonyaulax Polyhedra-Dinoflagellate:	Emission Excited at 390 nm
	Excitation Monitored at 440 nm
Gymnooinium Nelsoni-Dinoflagellate:	Emission Excited at 365 nm
	Excitation Monitored at 456 nm

2.2 Spectral Data

RELATIVE INTENSIT Y:

400
500
600

m my

(1)

RELATIVE INTENSITY: ~

1,

WAVELENGTH (NANOMETERS)

$$
\begin{array}{lll}
\text { FIGURE 70: } & \text { CODE: E9RX } \\
& \text { DATE: } 6 / 20 / 72
\end{array}
$$

$$
\begin{aligned}
& \text { GALVESTC } \\
& \text { Station } 9
\end{aligned}
$$

$$
\begin{aligned}
& \text { GULF OF MEXICO: } \\
& \text { GALVESTON BAY, TEXAS } \\
& \text { Station } 9
\end{aligned}
$$

EXCITATION SPECTRUM Monitored

$$
\begin{aligned}
& \text { at } 680 \mathrm{~nm} \\
& \text { atiON }
\end{aligned}
$$

RELATIVE INTENSITY: 6

WAVELENGTH (NANOMETERS)

WAVELENGTH (NANOMETERS)

FIGURE 119: \quad| CODE: $29 B M$ |
| :--- |
| DATE: $4 / 4 / 72$ |

ATLANTIC OCEAN:
FORT LAUDERDALE, FLORIDA
Station 02
EMISSION SPECTRUM Excited
at 340 nm

1

1 1 －

WAVELENGTH (NA OMETERS)

$$
\begin{aligned}
& \text { FIGURE 133: } \begin{array}{l}
\text { CODE: DI0BM } \\
\text { DATE: } 9 / 11 / 72 \\
\text { PARTICULATES FROM SEAW ATER } \\
\text { GULF OF MEXICO: } \\
\text { CARRABELLE, FLORIDA } \\
\text { Station D } \\
\text { EMISSION SPECTRA Excited at } \\
\text { (A) } 280 \mathrm{~nm} \\
\text { (B) } 360 \mathrm{~nm}
\end{array}
\end{aligned}
$$

\square

\square

$\therefore \infty-\infty=-\infty$

(

WAVELENGTH (NANOMETERS)

Z

