99 research outputs found

    Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin

    Get PDF
    Whereas serious health consequences of widespread consumption of groundwater elevated in As have been documented in several South Asian countries, the mechanisms responsible for As mobilization in reducing aquifers remain poorly understood. We document here a previously unrecognized and consistent relationship between dissolved As concentrations in reducing groundwater and the phosphate-mobilizable As content of aquifer sediment for a set of precisely depth-matched samples from across Bangladesh. The relationship holds across nearly 3 orders of magnitude in As concentrations and suggests that regional as well as local patterns of dissolved As in shallow groundwater are set by the solid phase according to a remarkably constant ratio of ∼250 μg/L dissolved As per 1 mg/kg P-mobilizable As. We use this relationship in a simple model of groundwater recharge to propose that the distribution of groundwater As in shallow aquifers of the Bengal Basin could primarily reflect the different flushing histories of sand formations deposited in the region over the past several thousand years

    Surfactant status and respiratory outcome in premature infants receiving late surfactant treatment.

    Get PDF
    BACKGROUND:Many premature infants with respiratory failure are deficient in surfactant, but the relationship to occurrence of bronchopulmonary dysplasia (BPD) is uncertain. METHODS:Tracheal aspirates were collected from 209 treated and control infants enrolled at 7-14 days in the Trial of Late Surfactant. The content of phospholipid, surfactant protein B, and total protein were determined in large aggregate (active) surfactant. RESULTS:At 24 h, surfactant treatment transiently increased surfactant protein B content (70%, p < 0.01), but did not affect recovered airway surfactant or total protein/phospholipid. The level of recovered surfactant during dosing was directly associated with content of surfactant protein B (r = 0.50, p < 0.00001) and inversely related to total protein (r = 0.39, p < 0.0001). For all infants, occurrence of BPD was associated with lower levels of recovered large aggregate surfactant, higher protein content, and lower SP-B levels. Tracheal aspirates with lower amounts of recovered surfactant had an increased proportion of small vesicle (inactive) surfactant. CONCLUSIONS:We conclude that many intubated premature infants are deficient in active surfactant, in part due to increased intra-alveolar metabolism, low SP-B content, and protein inhibition, and that the severity of this deficit is predictive of BPD. Late surfactant treatment at the frequency used did not provide a sustained increase in airway surfactant

    Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh

    Get PDF
    The high-degree of spatial variability of dissolved As levels in shallow aquifers of the Bengal Basin has been well documented but the underlying mechanisms remain poorly understood. We compare here As concentrations measured in groundwater pumped from 4700 wells <22 m (75 ft) deep across a 25 km2 area of Bangladesh with variations in the nature of surface soils inferred from 18,500 measurements of frequency domain electromagnetic induction. A set of 14 hand auger cores recovered from the same area indicate that a combination of grain size and the conductivity of soil water dominate the electromagnetic signal. The relationship between pairs of individual EM conductivity and dissolved As measurements within a distance of 50 m is significant but highly scattered (r2 = 0.12; n = 614). Concentrations of As tend to be lower in shallow aquifers underlying sandy soils and higher below finer-grained and high conductivity soils. Variations in EM conductivity account for nearly half the variance of the rate of increase of As concentration with depth, however, when the data are averaged over a distance of 50 m (r2 = 0.50; n = 145). The association is interpreted as an indication that groundwater recharge through permeable sandy soils prevents As concentrations from rising in shallow reducing groundwater

    Flushing History as a Hydrogeological Control on the Regional Distribution of Arsenic in Shallow Groundwater of the Bengal Basin

    Full text link
    Whereas serious health consequences of widespread consumption of groundwater elevated in As have been documented in several South Asian countries, the mechanisms responsible for As mobilization in reducing aquifers remain poorly understood. We document here a previously unrecognized and consistent relationship between dissolved As concentrations in reducing groundwater and the phosphate-mobilizable As content of aquifer sediment for a set of precisely depth-matched samples from across Bangladesh. The relationship holds across nearly 3 orders of magnitude in As concentrations and suggests that regional as well as local patterns of dissolved As in shallow groundwater are set by the solid phase according to a remarkably constant ratio of ∼250 μg/L dissolved As per 1 mg/kg P-mobilizable As. We use this relationship in a simple model of groundwater recharge to propose that the distribution of groundwater As in shallow aquifers of the Bengal Basin could primarily reflect the different flushing histories of sand formations deposited in the region over the past several thousand years

    Marvel analysis of the measured high-resolution rovibrational spectra of H232S

    Get PDF
    44325 measured and assigned transitions of H232S, the parent isotopologue of the hydrogen sulfide molecule, are collated from 33 publications into a single database and reviewed critically. Based on this information, rotation-vibration energy levels are determined for the ground electronic state using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) technique. The ortho and para principal components of the measured spectroscopic network of H232S are considered separately. The verified set of 25 293 ortho- and 18 778 para- H232S transitions determine 3969 ortho and 3467 para energy levels. The MARVEL results are compared with alternative data compilations, including a theoretical variational linelist

    Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh

    Get PDF
    International audienceBackground The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh. Results Variations in surface geomorphology mapped by electromagnetic conductivity indicate that permeable sandy soils are associated with underlying aquifers that are moderately reducing to a depth of 10–30 m, as indicated by acid-leachable Fe(II)/Fe ratios 5 mg L-1. More reducing aquifers are typically capped with finer-grained soils. The patterns suggest that vertical recharge through permeable soils is associated with a flux of oxidants on the banks of the Hooghly River and, further inland, in both Chakdaha and Araihazar. Moderately reducing conditions maintained by local recharge are generally associated with low As concentrations in Araihazar, but not systematically so in Chakdaha. Unlike Araihazar, there is also little correspondence in Chakdaha between dissolved As concentrations in groundwater and the P-extractable As content of aquifer particles, averaging 191 ± 122 ug As/L, 1.1 ± 1.5 mg As kg-1 (n = 43) and 108 ± 31 ug As/L, 3.1 ± 6.5 mg As kg-1 (n = 60), respectively. We tentatively attribute these differences to a combination of younger floodplain sediments, and therefore possibly more than one mechanism of As release, as well as less reducing conditions in Chakdaha compared to Araihazar. Conclusion Systematic dating of groundwater and sediment, combined with detailed mapping of the composition of aquifer solids and groundwater, will be needed to identify the various mechanisms underlying the complex distribution of As in aquifers of the Bengal Basin

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454
    • …
    corecore