16 research outputs found

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition

    Get PDF
    Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation

    Comparison of Different Ultrasonic Tip Angulations on Time Required for Cast Post Removal

    No full text

    Enhanced infection prophylaxis reduces mortality in severely immunosuppressed HIV-infected adults and older children initiating antiretroviral therapy in Kenya, Malawi, Uganda and Zimbabwe: the REALITY trial

    Get PDF
    Meeting abstract FRAB0101LB from 21st International AIDS Conference 18–22 July 2016, Durban, South Africa. Introduction: Mortality from infections is high in the first 6 months of antiretroviral therapy (ART) among HIV‐infected adults and children with advanced disease in sub‐Saharan Africa. Whether an enhanced package of infection prophylaxis at ART initiation would reduce mortality is unknown. Methods: The REALITY 2×2×2 factorial open‐label trial (ISRCTN43622374) randomized ART‐naïve HIV‐infected adults and children >5 years with CD4 <100 cells/mm3. This randomization compared initiating ART with enhanced prophylaxis (continuous cotrimoxazole plus 12 weeks isoniazid/pyridoxine (anti‐tuberculosis) and fluconazole (anti‐cryptococcal/candida), 5 days azithromycin (anti‐bacterial/protozoal) and single‐dose albendazole (anti‐helminth)), versus standard‐of‐care cotrimoxazole. Isoniazid/pyridoxine/cotrimoxazole was formulated as a scored fixed‐dose combination. Two other randomizations investigated 12‐week adjunctive raltegravir or supplementary food. The primary endpoint was 24‐week mortality. Results: 1805 eligible adults (n = 1733; 96.0%) and children/adolescents (n = 72; 4.0%) (median 36 years; 53.2% male) were randomized to enhanced (n = 906) or standard prophylaxis (n = 899) and followed for 48 weeks (3.8% loss‐to‐follow‐up). Median baseline CD4 was 36 cells/mm3 (IQR: 16–62) but 47.3% were WHO Stage 1/2. 80 (8.9%) enhanced versus 108(12.2%) standard prophylaxis died before 24 weeks (adjusted hazard ratio (aHR) = 0.73 (95% CI: 0.54–0.97) p = 0.03; Figure 1) and 98(11.0%) versus 127(14.4%) respectively died before 48 weeks (aHR = 0.75 (0.58–0.98) p = 0.04), with no evidence of interaction with the two other randomizations (p > 0.8). Enhanced prophylaxis significantly reduced incidence of tuberculosis (p = 0.02), cryptococcal disease (p = 0.01), oral/oesophageal candidiasis (p = 0.02), deaths of unknown cause (p = 0.02) and (marginally) hospitalisations (p = 0.06) but not presumed severe bacterial infections (p = 0.38). Serious and grade 4 adverse events were marginally less common with enhanced prophylaxis (p = 0.06). CD4 increases and VL suppression were similar between groups (p > 0.2). Conclusions: Enhanced infection prophylaxis at ART initiation reduces early mortality by 25% among HIV‐infected adults and children with advanced disease. The pill burden did not adversely affect VL suppression. Policy makers should consider adopting and implementing this low‐cost broad infection prevention package which could save 3.3 lives for every 100 individuals treated

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore