226 research outputs found

    A stable cut finite element method for partial differential equations on surfaces: The Helmholtz–Beltrami operator

    Get PDF
    We consider solving the surface Helmholtz equation on a smooth two dimensional surface embedded into a three dimensional space meshed with tetrahedra. The mesh does not respect the surface and thus the surface cuts through the elements. We consider a Galerkin method based on using the restrictions of continuous piecewise linears defined on the tetrahedra to the surface as trial and test functions. Using a stabilized method combining Galerkin least squares stabilization and a penalty on the gradient jumps we obtain stability of the discrete formulation under the condition hk<C, where h denotes the mesh size, k the wave number and C a constant depending mainly on the surface curvature κ, but not on the surface/mesh intersection. Optimal error estimates in the H1 and L2-norms follow

    A Stabilized Cut Streamline Diffusion Finite Element Method for Convection-Diffusion Problems on Surfaces

    Get PDF
    We develop a stabilized cut finite element method for the stationary convection diffusion problem on a surface embedded in R d . The cut finite element method is based on using an embedding of the surface into a three dimensional mesh consisting of tetrahedra and then using the restriction of the standard piecewise linear continuous elements to a piecewise linear approximation of the surface. The stabilization consists of a standard streamline diffusion stabilization term on the discrete surface and a so called normal gradient stabilization term on the full tetrahedral elements in the active mesh. We prove optimal order a priori error estimates in the standard norm associated with the streamline diffusion method and bounds for the condition number of the resulting stiffness matrix. The condition number is of optimal order for a specific choice of method parameters. Numerical examples supporting our theoretical results are also included

    Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions

    Get PDF
    We develop a theoretical framework for the analysis of stabilized cut finite element methods for the Laplace-Beltrami operator on a manifold embedded in Rd of arbitrary codimension. The method is based on using continuous piecewise linears on a background mesh in the embedding space for approximation together with a stabilizing form that ensures that the resulting problem is stable. The discrete manifold is represented using a triangulation which does not match the background mesh and does not need to be shape-regular, which includes level set descriptions of codimension one manifolds and the non-matching embedding of independently triangulated manifolds as special cases. We identify abstract key assumptions on the stabilizing form which allow us to prove a bound on the condition number of the stiffness matrix and optimal order a priori estimates. The key assumptions are verified for three different realizations of the stabilizing form including a novel stabilization approach based on penalizing the surface normal gradient on the background mesh. Finally, we present numerical results illustrating our results for a curve and a surface embedded in R3

    Effect of anisotropy and destructuration on behavior of Haarajoki test embankment

    Get PDF
    This paper investigates the influence of anisotropy and destructuration on the behavior of Haarajoki test embankment, which was built by the Finnish National Road Administration as a noise barrier in 1997 on a soft clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. The construction and consolidation of the embankment is analyzed with the finite-element method using three different constitutive models to represent the soft clay. Two recently proposed constitutive models, namely S-CLAY1 which accounts for initial and plastic strain induced anisotropy, and its extension, called S-CLAY1S which accounts, additionally, for interparticle bonding and degradation of bonds, were used in the analysis. For comparison, the problem is also analyzed with the isotropic modified cam clay model. The results of the numerical analyses are compared with the field measurements. The simulations reveal the influence that anisotropy and destructuration have on the behavior of an embankment on soft clay

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    A large-strain radial consolidation theory for soft clays improved by vertical drains

    Get PDF
    A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is deposited at a low initial density, a significant amount of deformation or surface settlement occurs. Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing equation based on Gibson's large-strain theory and Barron's free-strain theory incorporating the radial and vertical flows, the weight of the soil, variable hydraulic conductivity and compressibility during the consolidation process is therefore presented
    corecore