
TECHNICAL NOTE

A large-strain radial consolidation theory for soft clays
improved by vertical drains

X. GENG� and H.-S. YU†

A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for
promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is
deposited at a low initial density, a significant amount of deformation or surface settlement occurs.
Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage
dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing
equation based on Gibson’s large-strain theory and Barron’s free-strain theory incorporating the radial
and vertical flows, the weight of the soil, variable hydraulic conductivity and compressibility during the
consolidation process is therefore presented.
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INTRODUCTION
Soft clays often have low bearing capacity, high compressi-
bility with high water content and large void ratios, affecting
the long-term stability of buildings, roads, rail tracks and
other forms of major infrastructure (Geng et al., 2011).
Therefore, it is imperative to stabilise these soils before
commencing construction, thereby preventing unacceptable
differential settlement. Vertical drains combined with
vacuum pressure and surcharge preloading are widely used
to accelerate the consolidation of soft clay, decreasing excess
pore-water pressure and increasing effective stress (Hansbo,
1979; Atkinson & Eldred, 1981; Runesson et al., 1985; Holtz
et al., 1991; Hird et al., 1992; Mesri et al., 1994; Indraratna &
Redana, 2000; Zhu & Yin, 2000; Fox et al., 2003; Walker &
Indraratna, 2006; Indraratna et al., 2009; Ghandeharioon
et al., 2010). Negative suction by vacuum preloading along
the length of the drain causes a radial hydraulic flow towards
the drain. This, in turn, prevents the build-up of high excess
pore-water pressure in the soil by reducing the seepage path.
Additionally, less pore-water pressure build-up reduces the
risk of failure (Indraratna et al., 2005; Geng et al., 2011,
2012). The theory of Barron (1948) has formed the basis for
most analyses and research on radial consolidation, where
two types of vertical drains are considered: ‘free vertical
strain’ resulting from a uniform distribution of surface load,
and ‘equal vertical strain’ caused by imposing the same
vertical deformation on the surface for a uniform soil. To
obtain closed-form solutions, the vertical strain is assumed to
be infinitesimal, the weight of the soil is usually omitted, the
hydraulic conductivity and coefficient of compressibility of
the soil are assumed to remain unchanged from a given load
increment and linear stress–strain behaviour is assumed.
However, with thick marine soft clay layers, these simplifying

assumptions are not applicable. When a mixture of soil and
water is deposited at a low initial density, a significant
amount of deformation or surface settlement occurs,
especially when prefabricated vertical drains (PVDs) and
vacuum preloading techniques are used. In cases where an
embankment has recently been constructed or the clay is
deep and soft because consolidation is incomplete, the weight
of the soil cannot be omitted. Furthermore, it has been
recognised that the assumption of constant permeability and
compressibility does not prove to be acceptable for very soft
soil portions which demonstrate highly plastic deformation
(Mikasa, 1965; Geng et al., 2006).
Thus, although large strains are commonly encountered in

projects where PVD with surcharge or vacuum preloading are
used (Kwan Lo & Mesri, 1994; Selfridge & McIntosh, 1994;
Bergado et al., 1997), it is rare to find any research conducted
on PVDs combined with vacuum preloading and surcharge
preloading using large-strain theory (Ito & Azam., 2013).
For one-dimensional large-strain theory, Gibson et al. (1981)
used a continuum model to describe the large-strain con-
solidation of a layer of soil under its own weight. Since
Gibson’s publication, experimental and numerical issues of
one-dimensional large-strain consolidation have been reported
(Znidarcic et al., 1984; Tan et al., 1990; De Boer et al., 1996;
Sills, 1998; Toorman, 1999; Bartholomeeusen et al., 2002).
Therefore, on the basis of Gibson et al.’s (1981) one-

dimensional large-strain theory and Barron’s (1948) free
strain theory, a governing equation that considers the radial
and vertical flows, the weight of the soil, time-dependent
surcharge and vacuum preloading, along with variable
hydraulic conductivity and compressibility during consolida-
tion, is presented.

MODEL DESCRIPTION AND COORDINATE
SYSTEMS
To obtain the governing equation for the large-strain

consolidation of soil with vertical drains, the following
assumptions are made.

(a) A saturated homogeneous layer of soil with an initial
height H is treated as an idealised two-phase material,
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in which the solid particles and pore fluid are
incompressible. The term ‘homogeneous’ refers to the
constitutive relationships of the layer, not the initial
distribution of the void ratio within the layer.

(b) The soil is fully saturated.
(c) Darcy’s law is valid.
(d ) Load is distributed uniformly over this area.
(e) The external radius re is impervious, or no flow occurs

across this boundary because of symmetry.
( f ) All compressive strains within the soil mass occur in a

vertical direction within the radial velocity of the solid
skeleton vr

s¼ 0.
(g) The principal directions of the stress tensor coincide

with the vertical (ξ) and radial (r) axes.

As in Barron (1948), the problem is simplified to be
axisymmetric, as shown in Fig. 1(a).
In the vertical direction, the usual coordinate system used

in geotechnical engineering is the Eulerian system where the
deformation of material is related to planes fixed in space.
Thus, excess pore pressure in a consolidating layer of clay is
measured at a point specifically related to a fixed physical
datum. It should be noted that under this system the particles
(porous skeleton) move with respect to the Eulerian
coordinate system as consolidation proceeds. Under infini-
tesimal strain, the theories of consolidation assume that the
thickness of the compressible layer is constant and any
deformation of the layer during consolidation is assumed to
be small, compared with its thickness. Using a Eulerian
system, a piezometer is located at some point in the layer of
clay and is referenced in space to a fixed datum. Figs 1(b)
and 1(c) show the Lagrangian and convective coordinates. A
saturated layer of clay has an initial thickness H with a fixed
bottom, for example, a rock boundary underlying soft clay
(Gibson et al., 1981) (Fig. 1(b)). A thin sample of the clay
layer (A0B0C0D0) has a coordinate position a and has thick-
ness δa (Gibson et al., 1981). Note that the position of the
bottom boundary (datum plane) is at a¼ 0. The position of
the upper boundary is at a¼ a0 (Gibson et al., 1981). The
distance a is the Lagrangian coordinate (Gibson et al., 1981).

The clay layer in the configuration shown by Fig. 1(b) will
have a new configuration, as shown in Fig. 1(c), with the
progression of consolidation. The datum plane remains fixed.
The top surface has moved and the sample deforms to a new
position (ABCD). A new distance ξ locates a material point
as a function of time; the distance ξ is the convective
coordinate (Gibson et al., 1981).
The Lagrangian coordinate a and time t are independent

variables, while the convective coordinate ξ is a variable that
depends on a and t, and also with assumption (6) that ξ is a
function of (a, t). The relationship between a and ξ is given by
Gibson et al. (1981) as follows

@ξ

@a
¼ 1þ e

1þ e0
ð1Þ

in which e is the void ratio of the clay layer, and e0 is the initial
void ratio as for t=0. Thus, at any time t while the top
surface (upper boundary) and the bottom (lower boundary)
of the layer of clay can be denoted by a¼H and a¼ 0, in the
convective coordinate system the same boundaries are
located at ξ¼ ξ0(t)¼H� s0(t) – where s0(t) is the displace-
ment of the ground surface – and ξ¼ 0, respectively.

General equations in convective coordinate

(a) Assuming that the soil particles and the pore water are
incompressible, the equations for large-strain radial
consolidation of saturated soil in the convective vertical
coordinate system are as follows

@σðξ; r; tÞ
@ξ

¼ �ðGs þ eÞγw
1þ e

ð2aÞ

where σ is the total stress σ¼ (ξ, r, t), Gs is the specific gravity
of the solid particles and γw is the unit weight of water
In the radial direction

@σðξ; r; tÞ
@r

¼ 0 ð2bÞ
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Fig. 1. Coordinate systems: (a) Eulerian coordinate system; (b) convective and Lagrangian coordinate system: initial configuration t=0;
(c) convective and Lagrangian coordinate system: current configuration at time t
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(b) Equation for equilibrium of the pore water

The definition of excess pore pressure is u¼ ut� u0*, where ut
is the total pore-water pressure, u is the excess pore-water
pressure and u0* is the initial hydrostatic pore-water pressure.
Specifically, the initial hydrostatic pore-water pressure is a
‘virtual’ and time-dependent hydrostatic distribution, with
the piezometric level located at the bottom layer in the
current configuration as u0* (a, t)¼ γw(ξ0� ξ).

Therefore, in the vertical direction

@ut
@ξ

¼ @u
@ξ

� γw ð3aÞ

and in the radial direction

@ut
@r

¼ @u
@r

ð3bÞ

(c) Compressibility equation of effective stress with
void ratio

e ¼ e0 � Cc log10
σ′

σ′0

� �
ð4Þ

where e0 is the initial void ration,Cc is the compression index,
σ′ is the effective stress and σ′0 is the initial effective stress.

Darcy’s law and solid skeleton compressibility equation

(a) Darcy’s flow

The hydraulic gradients in the vertical direction can be
given as

iξ ¼ 1
γw

@u
@ξ

ð5aÞ

vξ ¼ e
1þ e

ðvwξ � vsÞ ¼ �kξ iξ ð6aÞ

vξ is the apparent velocity of flow in the vertical direction; vξ
w

is the actual velocity of water in the vertical direction; and
vs is the actual velocity of solid in the vertical direction.

The hydraulic gradient in a radial direction is

ir ¼ 1
γw

@u
@r

ð5bÞ

vr ¼ e
1þ e

vwr ¼ �krir ð6bÞ

vr is the apparent velocity of flow in radial direction; vr
w is the

actual velocity of water in the radial direction. Solid only
moves in the vertical direction, therefore, there is no actual
velocity of solid in the radial direction.

(b) Continuity equation

Consider the element shown as Figs 1(a) and 1(b). The
element exists at a depth ξ above the bottom of the com-
pressible layer; it has a thickness dξ and volume rdθdrdξ.
Volumetric change of the element is the difference between
the amount of flow into and out of the element.

Volume changes within the soil element are equal to the
net decrease in volume of water, therefore

dV ¼ dqr þ dqξ ð7Þ

in which dV is the volume change of the soil element, dqr is
the volume change in the radial direction and dqξ is the
volume change in the radial direction.
The quantity of flow

qξ ¼ e
1þ e

ðvwξ � vsÞrdrdθ ð8Þ

qξ þdqξ ¼ e
1þe

ðvwξ �vsÞþ @

@ξ
e

1þe
ðvwξ �vsÞ

� �
dξ

� �
rdrdθ

ð9Þ
Then

dqξ ¼ @

@ξ

e
1þ e

ðvwξ � vsÞ
� �

dξrdrdθ ð10Þ

In the radial direction

qr ¼ e
1þ e

vwr rdξdθ ð11Þ

qrþdqr ¼ e
1þe

� �
vwr þ

@

@r
e

1þe

� �
vwr

� �
dr

� �
rþ drð Þdθdξ

ð12Þ
Then

dqr ¼ e
1þ e

� �
vwr dθdrdξ þ

@

@r
e

1þ e

� �
vwr

� �
rdθdrdξ ð13Þ

Therefore, the equation for the continuity of pore-water
flow is

vwr
r

e
1þ e

þ @

@r
e

1þ e
vwr

� �
þ @

@ξ

e
1þ e

vwξ � vs
� 	� �

¼ � 1
1þ e

@e
@t

ð14Þ

An alternative way of deriving equation (14) from a general
formulation of the balance of mass equations for solid and
water, as suggested by an anonymous reviewer of this
technical note, is also included in Appendix 1.
Corresponding Langrangian equations can be obtained by

combining equations (1)–(3)

@σ

@a
¼ �ðGs þ eÞγw

1þ e0
ð15Þ

in which σ is the total stress in Langrangian coordinate

@ut
@a

¼ @u
@a

� ð1þ eÞγw
1þ e0

ð16Þ

vwξ � vs ¼ � kξð1þ e0Þ
γwe

@u
@a

ð17Þ

The relationship between the radial component of Darcy’s
velocity and the radial component of the hydraulic gradient
is required

vwr ¼ � krð1þ eÞ
γwe

@u
@r

ð18Þ

1
rγw

@

@r
rkr

@u
@r

� �
þ 1þ e0

1þ eð Þγw
@

@a
kξ

@u
@a

1þ e0
1þ eð Þ

� �
¼ 1

1þ e
@e
@t

ð19Þ
In Gibson’s large-strain consolidation theory, simplified
assumptions were made in order to reduce the governing
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equation from a highly non-linear form to a linear form
(Gibson et al., 1981; Cai & Geng, 2009)

gðeÞ ¼ � kv
γwð1þ eÞ

@σ′

@e
¼ cv

ð1þ eÞ2 ð20aÞ

and

λðeÞ ¼ � d
de

de
dσ′

� �
ð20bÞ

where kv is the vertical permeability of the soil; cv is the
small-strain coefficient of consolidation; g(e) is the finite-
strain coefficient of consolidation; and λ(e) is the linearisa-
tion constant.
However, the vertical permeability of the soil (kξ) is often

derived empirically to be an exponential function with base
10 of the void ratio

kξ ¼ kξ0 � 10e�e0=Ckξ ð21Þ
The constitutive laws linking the void ratio e to the radial
permeability coefficient kr and the effective stress σ′ use the
similarity exponential function, which is as follows (Fig. 2)

kr ¼ kr0 � 10e�e0=Ckr ð22Þ
whereCkξ is avertical permeability change index, the slope of
the e–log 10kξ relationship, and Ckr is a radial permeability
change index, the slope of the e–log 10kr relationship.
Although equation (20a) gives a good approximation of

equation (21) for a given range of void ratios for appropriate
types of soil (i.e. soils with Ckr values within an appropriate
range) (Fig. 3), it is still better to use the one, equation (21),
which is more general. This is illustrated in Fig. 3 using
results from Tavenas et al. (1983), for a plot of e values rang-
ing from 0·1 to 1·8 and Ckr¼ 3 (corresponding to Swedish
clays) where good agreement between equations (20a) and
(21) is evident.
Replacing kξ and kh in equation (19) by equations (21),

(22) and (4) and also by considering the principle of effective
stress (σ¼ σ′þ ut), the following equation governing excess
pore-water pressure in the Lagrangian system can be given
as (note that the detail of derivation can be found in
Appendix 2)

A 1þ eð Þkr0
r 1þ e0ð Þ

@

@r
r10 e�e0ð Þ 1=Ckr�1=Ccð Þ @e

@r

� �

þ 1� Gsð Þkξ0 d
de

10e�e0=Ckr

1þ e

 !
@e
@a

� Akξ0
@

@a
ð1þ e0Þ
ð1þ eÞ 10 e�e0ð Þ 1=Ckr�1=Ccð Þ @e

@a

� �

¼ 1
1þ e0

@e
@t

ð23Þ

where A ¼ σ′0 � ln 10=γwCc.

BOUNDARYAND INITIAL CONDITIONS
Here the case is considered where the top surface (a=H )

of the thick layer of clay is pervious but the bottom (a=0)
is impervious. Therefore, the boundary conditions in the
Langrangian coordinates are

where Q(t) is the time-dependent surcharge loading and p(t)
is the time-dependent vacuum loading.
The initial condition corresponding to constant loading

can then be expressed as

t ¼ 0 e ¼ e0 � Cc log10 1þ ðGs � 1Þγwa
σ′0 1þ e0ð Þ

� �
ð25Þ

NUMERICAL RESULTS
Equation (23) is highly non-linear and does not have a

general solution for the boundary conditions mentioned
previously. Therefore, the finite-element solver FlexPDE
(Professional Version 6.35; PDE Solutions, 2012), with an
automatic adaptive mesh approach, was used to solve
equation (23). The two-dimensional numerical finite-element
configurations are shown in Fig. 4. The parameters used
for this analysis are: rw¼ 0·07 m, re¼ 0·7 m, H¼ 10 m,
Cc¼ 0·4, e0¼ 1·1, σ′0 ¼ 20 kPa, kr0¼ 4·48� 10�4 m/day,
kξ0¼ 2·27� 10�4 m/day, analysis point A: rA¼ 0·68 m,
HA¼ 0·3 m. The rates of Cc/Ckξ and Cc/Ckr for soil in the
range of 0·5–1·5 are used in the analysis (Berry & Poskitt,
1969; Gibson et al., 1990; Geng et al., 2006). The ranges of
specific gravity (Gs) of soils are given in Table 1. According to
Table 1, Gs¼ 2·9 is the upper limit for a clay and silty clay
type of soil. In fact, for a soil with mica or iron, the specific
gravity Gs could reach 3·0. For organic soils, the specific
gravity will be below 2·0, therefore, Gs¼ 1·8 was chosen to
represent this type of soil. Furthermore, when Gs¼ 1·0,
according to the governing equation (23) and the boundary
conditions, and the initial condition equations (24) and (25),
the large-strain theory should reduce to the small-strain
theory. Therefore, in this paper, Gs¼ 1, 1·8 and 2·9 were
chosen for the numerical calculations.
The degree of consolidation can be defined either in terms

of effective stress, which shows the rate of the increase of
effective stress or the rate of dissipation of excess pore-water
pressure (Up), or in terms of settlement, which indicates the
rate of settlement development (Us) (Geng et al., 2006).
The degree of consolidation of the soil defined in terms of

effective stress Up, can be derived as

Up ¼
ÐH
0

Ð re
rw
rσ′drdaÐH

0

Ð re
rw
rσ′f drda

ð26Þ

where σ′f is the final effective stress.
The degree of consolidation of the soil defined in terms of

strain, Us, can be derived as

Us ¼
ÐH
0

Ð re
rw
εrdrdaÐH

0

Ð re
rw
εurdrda

¼
ÐH
0

Ð re
rw

e0 � eð ÞrdrdaÐH
0

Ð re
rw

e0 � euð Þrdrda
ð27Þ

where eu is the final void ratio.
Figure 5 shows a comparison between results for large-strain

radial consolidation theory and the classic small-strain radial
consolidation theory (Barron, 1948) for the normalised pore-
water pressure (u/Qu) at point A (rA¼ 0·68 m, HA¼ 3·0 m, as
shown in Fig. 4). The dissipation of the pore-water pressure is
highly affected by the non-linear change of compressibility and
the permeability, aswell as the self-weight of the soil. There are
negligible differences between the large-strain radial theory

eðr;H; tÞ ¼ e0 � Cc log10
σ′0 þQðtÞ � pðtÞ

σ′0

� �
;

@e
@a






a¼0

¼ Gs � 1ð Þγw
1þ e0

Cc

σ′0 � ln 10
10e�e0=Cc

eðrw; a; tÞ ¼ e0 � Cc log10
σ′0 þQðtÞ � pðtÞ þ ðGs � 1Þγwa= 1þ e0ð Þ

σ′0

� �
;

@e
@r






r¼re

¼ 0

8>>><
>>>:

ð24Þ
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and the small-strain radial theory when the compressibility of
the soil divided by the permeability of the soil (both radial
permeability and vertical permeability) is equal to 1·0
(Cc/Ckξ¼ 1; Cc /Ckr¼ 1). When compressibility of the soil
over the permeability of the soil (horizontal permeability
and vertical permeability) is less than one (Cc/Ckξ, 1;
Cc/Ckr, 1), pore-water pressure dissipates faster with the
consideration of self-weight of the soil compared to classical
small-strain theory. In contrast, when compressibility of the
soil over the permeability of the soil (horizontal permeability
and vertical permeability) is greater than one (Cc /Ckξ. 1;
Cc /Ckr. 1), the actual pore-water pressure dissipates more
slowly with the consideration of self-weight of the soil

mv1

mv2

mv3

pcσv' σ i' pc'σ i'σv' + Δp σv' + Δp log(σv') log(kh)

e

e0

ef

e

e0

ef

Slope Cr

Slope Cc

Slope Ck

kh khi

–

e–

Fig. 2. e–log 10k and e–log 10σ′ relationships
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compared to the classical small-strain theory. In other words,
from e � log10 σ′ and e � log10 k relationships (equations
(20)–(22)), it can be observed that the void radio decreased
with the increase of the effective stress (σ′) as well as the
decrease in the permeability (kr and kξ). The void ratio will not
be affected by the changes of the effective stress and the
permeability only for the case when the ratio of the increase in
effective stress (σ′) and the decrease in the permeability (kr
and kξ) equals 1 during the consolidation process, and this is
very unlikely to happen inmost cases. Therefore, it is necessary
to consider the influence of the self-weight of the soil by using
large-strain radial consolidation. Moreover, the actual dissipa-
tion of pore-water pressure is faster or slower than the results
obtained from the classic radial consolidation theory depend-
ing on which factor is more dominant in relation to the
decrease of the void ratio, the increase in the effective stress (σ′)
or the decrease in the permeability (kr and kξ). If the changes of

effective stress have less influence than changes in the
permeability on the decrease of the void ratio (Cc/Ckξ, 1;
Cc/Ckr, 1), classic small-strain radial consolidation theory
will underestimate the dissipation of the pore-water pressure. If
the changes of effective stress have more influence than
changes in the permeability on the decrease of the void ratio
(Cc/Ckξ. 1; Cc/Ckr. 1), classic small-strain radial consolida-
tion theory will overestimate the dissipation of the pore-water
pressure. Therefore, in order to evaluate the actual consolida-
tion process more accurately, variations in permeability and
compressibility, self-weight of the soil, stress history and the
magnitude of preloading pressure should all be considered
when running the consolidation analysis.
Figure 6 shows the influence of the load increment ratio

(Qu=σ′0) on different degrees of consolidation for large-strain
theory (Up and Us). When Cc/Ckξ, 1 and Cc/Ckr, 1, the
increase of the load increment ratio (Qu=σ′0) has negligible
influence on Up. The increase of the load increment ratio
(Qu=σ′0) will influence Us more compared to the influence on
Up, especially in the middle of the consolidation process.
However, Us remains almost the same with the changing of
the Qu=σ′0 when Cc/Ckξ. 1 and Cc/Ckr. 1. The degree of
consolidation defined by pore-water pressure (Up) decreases
with the increase of the load increment ratio when Cc/Ckξ� 1
and Cc/Ckr� 1.
The influences of individual compressibility over per-

meability ratio (Cc/Ckξ and Cc/Ckr) on the degree of

Table 1. Soil specific gravities
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Fig. 6. Degree of consolidationU (Us andUp) plotted against time for varying load increment ratio (Qu=σ′0): (a)Us forCc/Ckr = 0·5,Cc/Ckξ=0·5;
(b) Up for Cc/Ckr = 0·5, Cc/Ckξ=0·5; (c) Us for Cc/Ckr = 1·0, Cc/Ckξ=1·0; (d) Up for Cc/Ckr = 1·0, Cc/Ckξ=1·0; (e) Us for Cc/Ckr = 1·5,
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consolidation (Up and Us) are shown in Fig. 7. Comparing
Cc/Ckξ to the ratio Cc/Ckr, the latter has a greater influence
on the degree of consolidation, which means horizontal
permeability has a major influence on the consolidation
progress, rather than the vertical permeability, in a vertical
drain system. With the same Cc/Ckr ratio, the influence
of Cc/Ckξ could be neglected when Cc/Ckξ� 1. At the same
time (t), Up is always less than Us, which is similar to the
one-dimensional, non-linear, small-strain consolidation
obtained by Geng et al. (2006), Geng (2008) and Cai &
Geng (2009). This also shows that the degree of consolidation
calculated based on Us occurs at a slightly higher rate than
the degree of consolidation calculated based on Up.

CONCLUSIONS
Based on Gibson’s large-strain theory and Barron’s free-

strain theory, a constitutive model has been presented that

incorporates the radial and vertical flows, weight of the
soil (Gs), vacuum preloading and the variable hydraulic con-
ductivity (kr and kξ), compressibility index (Cc) and per-
meability change index (Ckξ and Ckr) during consolidation.
The e � log10 kr, e � log10 kξ and e � log10 σ′ relationship
were used to represent the non-linear relationship of the soil.
By using the finite-element method, some results could be
given, and the difference between large-strain radial con-
solidation theory and the small-strain theory was found to
depend on the variable hydraulic conductivity, compressi-
bility and the weight of the soil, as well as the value of
external loading. When Cc/Ckr¼ 1 and Cc/Ckξ¼ 1, the actual
rate of consolidation was the same as the classic small-
strain theory (Barron’s theory). When Cc/Ckr� 1, the actual
dispersion of pore-water pressure process calculated by
large-strain theory took place at a slower rate than the
conventional solution. Moreover, the rate of consolidation
defined by the dissipation of pore-water pressure (Up) was
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found to decrease with the increase of the Qu=σ′0 values.
However, when Cc/Ckr� 1, according to the results from
large-strain theory, the increase of the Qu=σ′0 values did not
have much influence on the settlement or Us, which also
shows that the settlement occurs faster than excess pore
pressure dissipation. Also, with the same Cc/Ckr ratio, the
influence of Cc/Ckξ could be neglected when Cc/Ckξ� 1.

APPENDIX 1. ALTERNATIVE DERIVATION
OF EQUATION (14)

Working in direct (index-free) notation, for a general deformation
and flow process, the balance of mass of incompressible solid and
fluid phases require that

� @n
@t

þr � 1� nð Þvs½ � ¼ 0

@n
@t

þr � nvw½ � ¼ 0

where n is the porosity of the soil, see Coussy (2004: p. 12,
equations (1.59a,b)). Combined together they provide

r � ½nðvw � vsÞ� þ r � vs ¼ 0 ð28Þ
Considering that the divergence of solid skeleton velocity is linked to
the material time derivative of the Jacobian of the deformation
gradient F

J ¼ detðFÞ with F ¼ @ξðX ; tÞ
@X

by the relation (see Marsden & Hughes, 1983: p. 86)

r � vs ¼ J̇
J

where a superposed dot indicates a material time derivative,
equation (28) transforms into

r � ½nðvw � vsÞ� ¼ � J̇
J

ð29Þ

In the present case of one-dimensional deformation, in which

X ¼
a

R

( )
ξ ¼

ξða; tÞ
rðRÞ

( )
¼

ξða; tÞ
R

( )

F ¼
@ξ=@a 0

0 1

" #
J ¼ @ξ

@a
¼ 1þ e

1þ e0

Equation (29) yields

r � ½nðvw � vsÞ� ¼ r � e
1þ e

ðvw � vsÞ
� �

¼ � ė
1þ e

ð30Þ

Finally, remembering that in cylindrical coordinates the (spatial)
divergence of a vector V can be expressed as (Malvern, 1969: p. 667)

r � V ¼ 1
r
@

@r
rVrð Þ þ 1

r
@Vθ

@θ
þ @Vξ

@ξ

and noting that the problem is axially symmetric and vr
s = 0,

equation (30) finally yields

1
r
@

@r
r

e
1þ e

vwr

� �
þ @

@ξ

e
1þ e

vwξ � vsξ
� 	� �

¼ � ė
1þ e

ð31Þ

APPENDIX 2: DERIVATION OF THE
GOVERNING EQUATION (23)

From equation (4), the following equation can be obtained in the
vertical direction

@σ′

@a
¼ σ′0 � ln 10

Cc
10e0�e=Cc

@e
@a

ð32Þ

and in the radial direction

@σ′

@r
¼ σ′0 � ln 10

Cc
10e0�e=Cc

@e
@r

ð33Þ

By considering the principle of effective stress (σ¼ σ′þ ut),
equations (32) and (33) after differentiation can be changed as
follows.

In the vertical direction

@σ
@a

¼ σ′0 � ln 10
Cc

10e0�e=Cc
@e
@a

þ @ut
@a

ð34Þ

In the radial direction

@σ
@r

¼ σ′0 � ln 10
Cc

10e0�e=Cc
@e
@r

þ @ut
@r

ð35Þ

Substituting equations (15) and (16) (into) equation (34) yields

@u
@a

¼ � σ′0 � ln 10
Cc

10e0�e=Cc
@e
@a

þ ð1þ eÞγw
1þ e0

� ðGs þ eÞγw
1þ e0

ð36Þ

By substituting equations (2b) and (3b) (into) equation (35), the
following is obtained

@u
@r

¼ σ′0 � ln 10
Cc

10e0�e=Cc
@e
@r

ð37Þ

Replacing kξ and kh in equation (19) by equations (21) and (22) and
substituting equations (36) and (37), (the) governing equation (23)
can be obtained.

NOTATION
a distance, Lagrangian coordinate

Cc compression index
Ckr radial permeability change index
Ckξ vertical permeability change index
cv small-strain coefficient of consolidation

dqr volume change in radial direction
dqξ volume change in vertical direction
dV volume change of soil element
e void ratio of clay layer
eu final void ratio
e0 initial void ratio of clay layer
F Jacobian of the deformation gradient
Gs specific gravity of solid particles

g(e) finite-strain coefficient of consolidation
H height; and initial thickness of saturated clay layer
J Jacobian of deformation gradient F
kr radial permeability coefficient
kv vertical permeability of soil
kξ vertical permeability of soil
n porosity of soil

p(t) time-dependent vacuum loading
Q(t) time-dependent surcharge loading

R radial distance
r radial axis
re vertical drain external radius

s0(t) displacement of ground surface
t time

Up degree of consolidation of soil defined in terms of
effective stress

Us degree of consolidation of soil defined in terms of strain
ut total pore-water pressure
u0* initial hydrostatic pore-water pressure
vr apparent velocity of flow in radial direction
vr
s radial velocity of solid

vr
w actual velocity of water in radial direction
vs actual velocity of solid in vertical direction
vξ apparent velocity of flow in vertical direction
vξ
w actual velocity of water in vertical direction
v s skeleton velocity
vw fluid velocity
X position vector
γw unit weight of water

λ(e) linearisation constant
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ξ vertical axes
σ total stress
σ′ effective stress
σ′f final effective stress
σ′0 initial effective stress
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