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Abstract

We consider solving the surface Helmholtz equation on a smooth two dimensional
surface embedded into a three dimensional space meshed with tetrahedra. The mesh
does not respect the surface and thus the surface cuts through the elements. We
consider a Galerkin method based on using the restrictions of continuous piecewise
linears defined on the tetrahedra to the surface as trial and test functions.

Using a stabilized method combining Galerkin least squares stabilization and a
penalty on the gradient jumps we obtain stability of the discrete formulation under
the condition hk < C, where h denotes the mesh size, k the wave number and C a
constant depending mainly on the surface curvature κ, but not on the surface/mesh
intersection. Optimal error estimates in the H1 and L2-norms follow.

1 Introduction

The accurate computation of lateral waves in two dimensional surfaces, embedded in three
space dimensions, is an important problem in the mechanics of fluid films [?] and bubbles
[?, ?]. Similar computational challenges are found in the modelling of waves in cell mem-
branes, see for instance [?, ?]. Despite the importance of the accurate simulation of wave
phenomena on two dimensional surfaces for membrane dynamics there appears to be no
works in the numerical analysis literature discussing this problem. Our intention in the
present contribution is to design and analyse a finite element method for the computational
approximation of wave equations in the frequency domain on two-dimensional closed sur-
faces. We will consider a model from Grinfeld [?, Equation (103)], in the frequency domain.
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This leads to an indefinite elliptic problem of Helmholtz-type set on the closed surface that
we will consider as a model problem. The extension of the results derived herein to sur-
faces with boundary, using Dirichlet or impedance conditions, is straightforward using the
results from [?], but to limit the length of this manuscript we leave these aspects for further
work.

In a previous paper [?] we considered solving the Laplace-Beltrami problem on a smooth
two dimensional surface embedded into a three dimensional space partitioned into a mesh
consisting of shape regular tetrahedra. The mesh did not respect the surface and thus
the surface can cut through the elements in an arbitrary manner. Following Olshanskii,
Reusken, and Grande [?] we constructed a Galerkin method by using the restrictions of
continuous piecewise linears defined on the tetrahedra to the surface. Observe that the
discussion below also holds for the original approach where the surface is meshed [?, ?].
The motivation for the unfitted approach comes from situations where the film changes
shape during the simulation as in the fully time-dependent case or in shape optimization.

To alleviate the ill-conditioning of the resulting method we proposed to add a stabiliza-
tion term penalizing the jump of the gradient of the solution to the formulation. In the case
of indefinite elliptic problems a similar stabilization improves the stability of the formula-
tion yielding discrete wellposedness under a weaker condition on the mesh parameter and
the wave number than is usually expected. The analysis draws on ideas from [?, ?, ?] for
the stabilization of the Helmholtz equation. For background material on standard Galerkin
FEM for Helmholtz equations in flat domains we refer to the seminal work by Babuska
and Ihlenburg [?] and the later works by Melenk et al. on wave number explicit analysis
for hp-methods [?] and nonconforming methods [?].

Typically the finite element analysis of the wave equation in the frequency domain in-
troduces conditions on the size of the meshsize h compared to the wavenumber k. For a
standard Galerkin finite element method of indefinite elliptic problems, the condition that
hk2 has to be small for stability and optimal estimates. This follows by the analysis of
Schatz [?], using the combination of an H1 error estimate by G̊ardings inequality and a
duality argument showing that the L2-norm error converges at a faster rate than that mea-
sured in the H1-norm. Thanks to the stabilization the mesh-wavenumber condition takes
the form hk small instead. This condition appears here only because of the discrete ap-
proximation of the surface. In the case of a semi-disrete formulation where the integration
takes place on the exact surface the formulation is unconditionally stable. Our estimates
are explicit in the mesh size and the wave number, but not in the surface curvature, which
we assume is moderate. The conformity error introduced due to the approximation of the
surface however leads to a condition hk small. To simplify the presentation we will assume
that k > 1 and h < 1. Generic constants C may depend on the surface curvature, but not
on the wavenumber, the mesh-size or the intersection of the surface with the computational
mesh. In cases where we want to highlight a particular dependence, we add a subscript to
the constant.

The outline of the remainder of this paper is as follows: In Section 2 we formulate the
model problem and the finite element method, in Section 3 we prove a priori error estimates,
and finally in Section 4 we present numerical investigations confirming our theoretical
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results.

2 Model Problem and Finite Element Method

2.1 The Continuous Problem

Let Σ be a smooth two-dimensional closed and orientable surface embedded in R3 with
signed distance function b. We consider the following problem: for a given k ∈ R, find
u : Σ→ C such that

−∆Σu− k2u = f on Σ. (2.1)

Here ∆Σ is the Laplace-Beltrami operator defined by

∆Σ = ∇Σ · ∇Σ (2.2)

where ∇Σ is the tangent gradient
∇Σ = P Σ∇ (2.3)

with P Σ = P Σ(x) the projection of R3 onto the tangent plane of Σ at x ∈ Σ, defined by

P Σ = I − n⊗ n (2.4)

where n = ∇b denotes the exterior unit normal to Σ at x, I is the identity matrix, and ∇
the R3 gradient.

The corresponding weak statement takes the form: find u ∈ H1(Σ) such that

a(u, v) = l(v) ∀v ∈ H1(Σ) (2.5)

where
a(u, v) = (∇Σu,∇Σv)Σ − (k2u, v)Σ, l(v) = (f, v)Σ (2.6)

and (v, w)Σ =
∫

Σ
vw is the L2 inner product. We will assume that k ∈ R is such that the

Fredholm alternative yields a unique solution of the problem. Assuming that the following
bound holds on the smallest distance to an eigenvalue of ∆Σ,

min
m
|λm − k2| > ck (2.7)

we have the following elliptic regularity estimate:

k−1|u|2,Σ + |u|1,Σ + ‖ku‖Σ 6 C‖f‖Σ. (2.8)

Here ‖w‖2
Σ = (w,w)Σ denotes the L2 norm on Σ and

|w|2j,Σ = ‖(⊗ji=1∇Σ)w‖2
Σ, ‖w‖2

j,Σ =

j∑
i=0

|w|2j,Σ (2.9)
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are the Sobolev semi-norm and norm on Σ for j = 0, 1, 2, where the L2 norm for a matrix
is based on the pointwise Frobenius norm. The constant in (??) depends on the curvature
of the surface. The following L2-estimate is a consequence of the Fredholm’s alternative
under the assumption (??):

‖u‖2
Σ 6 max

m
|λm − k2|−2‖f‖2

Σ 6 c−2k−2‖f‖2
Σ. (2.10)

Using the equation we also immediately obtain a bound of the H1-norm of u

‖∇Σu‖2
Σ = (f, u) + k2‖u‖2

Σ 6 c−1(k−1 + c−1)‖f‖2
Σ. (2.11)

The H2-estimate, finally, is a consequence of the elliptic regularity of the Laplace-Beltrami
operator, |u|2,Σ 6 CR‖∆Σu‖Σ, see [?], and the fact that ∆Σu = −f − k2u implying that

‖∆Σu‖2
Σ = ‖f‖2

Σ + 2(f, k2u) + k4‖u‖2
Σ 6 (1 + 2c−1k + c−2k2)‖f‖2

Σ. (2.12)

Remark 2.1 We see that the constant C in (??) is defined by by the constants in the right
hand sides of (??), (??) and, the constant of (??) multiplied with C2

R.

Remark 2.2 We here consider the equation on complex form to allow for the addition of
damping in the form of complex wave number. The complex variables can then be exploited
to yield positivity of the stabilization terms. A robust method using real variables, valid
only for real wave numbers can be designed similarly using the ideas of [?].

2.2 Detailed Stability Bound on the Sphere

The assumption (??) can be checked in special cases such as for the sphere. In that case
λm = m(m+ 1), m = 1, 2, . . . (see [?]) and we can see that a moderately small c, allows for
an important range of values of k2. It is also clear in this case that the scaling proposed
in (??) is the one that allows for k2 to take values in a fraction of the real line where
(??) holds uniformly for increasing wavenumber. To see this denote the desired fraction
by α = 1−η, where η ∈ R+ is assumed to be small, and observe that the distance between
two eigenvalues λm and λm+1 is

δλm := λm+1 − λm = 2(m+ 1).

Now assume that
λm(1 + η/m) 6 k2 6 λm+1(1− η/(m+ 2)). (2.13)

First we show that this bound results in a constant fraction of the length of the inter-
val (λm, λm+1) admissible for k2. Writing the length of the admissible interval (λm(1 +
η/m), λm+1(1− η/(m+ 2)) we see that

λm+1(1− η/(m+ 2))− λm(1 + η/m) = δλm − (m+ 1)η − (m+ 1)η

= 2(m+ 1)− 2η(m+ 1) = 2(m+ 1)(1− η) = δλmα. (2.14)
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Therefore, regardless of m, if k2 takes a value between λm and λm+1, satisfying (??), then
α is indeed the fraction of the interval δλm that is admissible.

Next we will estimate the value of c in (??), assuming (??). It follows from this last
relation that

|λm − k2| ≥ λmη/m = (m+ 1)η

and
|λm+1 − k2| ≥ λm+1η/(m+ 2) = (m+ 1)η.

Using now that

(m+ 1)η =

(
m+ 1

m+ 2

) 1
2

λ
1
2
m+1η

and by the upper bound of (??)

λ
1
2
m+1 ≥ k

(
m+ 2

m+ 2− η

) 1
2

we have that

(m+ 1)η ≥
(
m+ 1

m+ 2

) 1
2

k

(
m+ 2

m+ 2− η

) 1
2

η =

(
m+ 1

m+ 2− η

) 1
2

kη ≥
√

2

3
kη.

We conclude that on the sphere the constant c of (??) is larger than or equal to
√

2
3
η.

Clearly it is interesting to see how the method performs compared to the standard
method in the vicinity of the eigenvalues and therefore the behavior of the method for
values of k2 close to an eigenvalue is explored in Section ??.

2.3 The Finite Element Method on Σ

Let K be a quasi uniform partition into shape regular tetrahedra of a domain Ω in R3

completely containing Σ. Let Kh be the set of tetrahedra that intersect Σ and denote
by Ωh the domain covered by Kh; that is,

Kh = {K ∈ K : K ∩ Σ 6= ∅}, Ωh = ∪K∈KhK. (2.15)

We denote the local mesh size by hK and define the global mesh size h = maxK∈Kh{hK}.
Since hK ∼ h by the quasi uniformity of K, we will simply use h throughout the remaining
work. We let Vh be the space of continuous piecewise linear, complex valued, polynomials
defined on Kh. Our finite element method takes the form: find ũh ∈ Vh such that

A(ũh, v) + γjj(ũh, v) = ls(v) ∀v ∈ Vh (2.16)

where the bilinear form A(·, ·) is defined by

A(v, w) = a(v, w) + γss(v, w) ∀v, w ∈ Vh (2.17)
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with the stabilization terms

s(v, w) =
∑
K∈Kh

h2(∆Σv + k2v,∆Σw + k2w)Σ∩K (2.18)

and
j(v, w) =

∑
F∈FI

([nF · ∇v], [nF · ∇w])F . (2.19)

Above FI denotes the set of internal interfaces in Kh, nF denotes a fixed unit normal to the
face F ∈ FI and [nF · ∇v] = (nF · ∇v)+ − (nF · ∇v)− with w(x)± = limt→0+ w(x± tnF ),
is the jump in the normal gradient across the face F . For consistency the right hand side
is modified to read

ls(v) = l(v)−
∑
K∈Kh

γsh
2(f,∆Σv + k2v)Σ∩K . (2.20)

The parameters γx ∈ C, x = s, j will be assumed to satisfy Im(γx) ≥ γmin > 0 for some
γmin ∈ R. The choice of sign in the complex part of the stabilization should be made so
that coercivity is obtained on the imaginary part of the bilinear form. The real part of the
stabilization parameter has been shown to allow for tuning of the numerical wave number
so that pollution can be minimized. See [?, ?] for a discussion of these aspects on planar
domains. To simplify the presentation and without loss of generality we will assume that
γ = γs = γj and Re(γ) = 0 below.

2.4 Approximation of the Surface

Next, we recall that for a smooth oriented surface Σ, there is an open δ tubular neighbor-
hood Uδ(Σ) = {x ∈ R3 : |b(x)| < δ} of Σ such that for each x ∈ Uδ(Σ) there is a unique
closest point p(x) ∈ Σ minimizing the Euclidean distance to x. Note that the closest point
mapping x 7→ p(x) satisfies p(x) = x − b(x)n(p(x)). Using p we extend u outside of Σ
by defining

ue(x) = u ◦ p(x) (2.21)

In the following, a superscript e is also used to denote the extension of other quantities
defined on the surface. The extension ve of v ∈ Hs(Σ) satisfies the stability estimate

‖ve‖s,Ωh 6 Ch
1
2‖v‖s,Σ, s = 0, 1, 2. (2.22)

For h sufficiently small the constant in the inequality (??) depends only on the curvature
of the surface Σ.

In practice we are typically not able to compute on the exact surface Σ, instead we
have to consider an approximate surface Σh. Depending on how the surface is described the
construction of the approximate surface can be done in different ways. Here we consider, in
particular, a simple situation where Σ is described by a level set function b and Σh is defined
by the zero level set to a piecewise linear approximate level set function bh ∈ Re(Vh). In
this case the approximate surface is a piecewise linear surface since it is the level set to a
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piecewise linear function. We let the approximate normal nh be the exact normal to the
piecewise linear approximate surface Σh. and that the following estimates hold

‖b‖L∞(Σh) 6 Ch2, ‖ne − nh‖L∞(Σh) 6 Ch. (2.23)

These properties are, for instance, satisfied if bh is the Lagrange interpolant of b. Observe
that by the properties of the interpolant the discrete interface Σh is also contained in Kh.
Finally, we define the lift vl of a function v defined on discrete surface Σh to the exact
surface Σ by requiring that

(vl)e = vl ◦ p = v. (2.24)

We refer to Figure ?? for an illustration of the relevant geometric concepts.

Figure 1: Set-up of the continuous and discrete domains. (Left) Continuous surface Σ
enclosed by a δ tubular neighborhood Uδ(Σ). (Right) Discrete manifold Σh embedded into
a background mesh K from which the active mesh Kh is extracted.

2.5 The Finite Element Method on Σh

Here let
Kh = {K ∈ K : K ∩ Σh 6= ∅}, Ωh = ∪K∈KhK (2.25)

and Vh be the continuous piecewise linear, complex valued functions defined on Kh. The
finite element method on Σh takes the form: find uh ∈ Vh such that

Ah(uh, v) + γjj(uh, v) = lh(v) ∀v ∈ Vh. (2.26)

The bilinear form Ah(·, ·) is defined by

Ah(v, w) = ah(v, w) + γssh(v, w) ∀v, w ∈ Vh (2.27)
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with
ah(v, w) = (∇Σhv,∇Σhw)Σh − (k2v, w)Σh (2.28)

and
sh(v, w) =

∑
K∈Kh

h2(∆Σhv + k2v,∆Σhw + k2w)Σh∩K (2.29)

where the tangent gradients are defined using the normal to the discrete surface

∇Σhv = P Σh∇v = (I − nh ⊗ nh)∇v. (2.30)

The form on the right hand side lh(·) is given by

lh(v) = (f e, v)Σh −
∑
K∈Kh

γsh
2(f e,∆Σhw + k2w)Σh∩K . (2.31)

Observe that since the level set function bh is piecewise linear and defined on Vh, ∆Σhv|K∩Σh =
0. Therefore the stabilization term and the right hand side reduces to

sh(v, w) =
∑
K∈Kh

h2(∆Σhv + k2v,∆Σhw + k2w)Σh = (h2k2v, k2w)Σh (2.32)

and

lh(v) = (f e, v)Σh −
∑
K∈Kh

γsh
2(f e,∆Σhv + k2v)Σh∩K = (f e, v − γsh2k2v)Σh (2.33)

We notice that these simplifications allow us to write the following formulation which is
suitable for implementation: find uh ∈ Vh such that

(∇Σhuh,∇Σhv)Σh − (k2(1− γsh2k2)uh, v)Σh + γjj(uh, v) = (fe, (1− γsh2k2)v)Σh ∀v ∈ Vh.
(2.34)

Since this weakly consistent stabilization actually is a norm on uh, one may prove that the
system is invertible for all h as follows. Assume that f = 0 in (??) and prove that this
implies uh = 0 (the system is square), then take v = uh in (??) and take the imaginary
part of the equation to obtain

Im(γs)(hk)2‖kuh‖2
Σh

6 0. (2.35)

Therefore uh = 0 and the discrete system is invertible. On planar domains one may prove a
similar result using only the gradient penalty term [?]. Due to the curved surface it seems
difficult to eliminate the lower order term in the stabilization.

For the analysis it will be useful to introduce the weakly consistent formulation also on
Σ. We let

Ar(uh, vh) := a(uh, vh) + γsr(uh, vh), sr(v, w) = (h2k2v, k2w)Σ. (2.36)
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Remark 2.3 The penalty on the gradient jumps plays two roles in this work. First, simi-
larly as in [?] it leads to a stable algebraic system. In the present case it is also necessary to
obtain error estimates independent of the wavenumber/mesh relation in the semi-discrete
case, and under the mild condition hk . 1 in the fully discrete case. Other stabilizations
can be applied provided they have similar stabilizing properties as the face penalty. However
due to this double role, the face penalty appears to be natural in this context. The applica-
tion of other stabilizing terms is left for future work, as well as the interesting question if
the method can be proven to be stable and accurate using only the stabilizing term j. This
is the case for the standard Helmholtz equation in the plane on a conforming mesh.

For future reference we now recall a key result from [?] that will be useful for the
analysis.

Lemma 2.1 There is a constant C > 0 such that for all vh ∈ Vh there holds

h‖∇vlh‖Σ6 Ch‖∇vh‖Σh 6 C(h‖∇Σhvh‖Σh + j(vh, vh)
1
2 ) (2.37)

6 C(h‖∇Σv
l
h‖Σ + j(vh, vh)

1
2 ). (2.38)

Proof. Identical to the proof of Lemma 3.2 of [?] and using equivalences ‖∇vlh‖Σ ∼
‖∇vh‖Σh and ‖∇Σv

l
h‖Σ ∼ ‖∇vh‖Σh .

The following Lemma will also be useful

Lemma 2.2 There is a constant Cκ, depending on the curvature of Σ, such that for all
v ∈ Vh there holds∑

K∈Kh

h2‖∆Σv
l
h‖2

Σ∩K 6 Cκ‖nΣ · ∇vlh‖Σ 6 Cκ(h
2‖∇Σv

l
h‖2

Σ + |||vh|||2j). (2.39)

Proof. First we use the following relation that follows from the arguments in [?]: since vh
is piecewise affine there holds

∆Σv
l
h|Σ∩K = −tr(κ)∇vlh · nΣ|Σ∩K , ∀K ∈ Kh. (2.40)

To see this we write

∆Σv
l
h = ∇Σ·(I−nΣ⊗nΣ)∇vlh = ∇Σ·(nΣnΣ·∇vlh) = −(∇·nΣ)nΣ·∇vlh−nΣ · (∇ΣnΣ)(∇vlh)︸ ︷︷ ︸

=0

and the relation follows recalling that ∇ · nΣ = tr(κ). Applying the relation (??) followed
by Lemma ?? we obtain∑

K∈Kh

h2‖∆Σv
l
h‖2

Σ∩K 6 Cκh
2‖∇vlh‖2

Σ 6 Cκ(h
2‖∇Σv

l
h‖2

Σ + |||vh|||2j). (2.41)
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3 A Priori Error Estimates

For the a priori error analysis we will follow the framework for the analysis of stabilized
finite element methods for the Helmholtz equation proposed in [?]. In order to estimate
the error induced by approximating the equations on an approximate surface we need to
first recall a number of technical results regarding the mapping from the approximate to
the exact surface and the bounds on the error committed when changing the domain of
integration. For detailed proofs, we refer to [?, ?, ?]. We also recall some approximation
error estimates.

3.1 Geometric Estimates

First we recall how the tangential gradient of lifted and extended functions can be computed
and how the surface measure changes under lifting. Starting with the Hessian of the signed
distance function

κ = ∇⊗∇b in Uδ0(Σ) (3.1)

the derivative of the closest point projection and of an extended function ve is given by

Dp = P Σ(I − bκ) = P Σ − bκ (3.2)

Dve = D(v ◦ p) = DvDp = DvP Σ(I − bκ). (3.3)

The self-adjointness of P Σ, P Σh , and κ, and the fact that P Σκ = κ = κP Σ and P 2
Σ = P Σ

leads to the identity

∇Σhv
e = P Σh(I − bκ)P Σ∇v = BT∇Σv (3.4)

where B denotes the invertible linear application

B = P Σ(I − bκ)P Σh : Tx(Σh)→ Tp(x)(Σ) (3.5)

mapping the tangential space of Σh at x to the tangential space of Σ at p(x). Setting
v = wl and using the identity (wl)e = w, we immediately get that

∇Σw
l = B−T∇Σhw (3.6)

for any elementwise differentiable function w on Σh lifted to Σ. We recall from [?, Lemma
14.7] that for x ∈ Uδ0(Σ), the Hessian κ admits a representation

κ(x) =
d∑
i=1

κei
1 + b(x)κei

aei ⊗ aei (3.7)

where κi are the principal curvatures with corresponding principal curvature vectors ai.
Thus

‖κ‖L∞(Uδ0 (Σ)) 6 C (3.8)
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for δ0 > 0 small enough and as a consequence the following bounds for the linear operator
B can be derived:

‖B‖L∞(Σh) 6 C, ‖B−1‖L∞(Σ) 6 C, ‖P Σ −BBT‖L∞(Σ) 6 Ch2. (3.9)

Next, we recall that the surface measure dσ on Σ is related to the surface measure dσh
on Σh by the identity

dσ = |B|dσh (3.10)

where |B| is the determinant of B which is given by

|B| = Π2
i=1(1− bκei )ne · nh. (3.11)

Using this the following estimates for the determinant can be proved,

‖ |B| ‖L∞(Σh) 6 C, ‖ |B|−1 ‖L∞(Σh) 6 C, ‖1− |B|‖L∞(Σh) 6 Ch2. (3.12)

3.2 Interpolation Error Estimates

We let πh : L2(Ωh) → Vh|Σh denote the standard Scott-Zhang interpolation operator and
recall the interpolation error estimate

‖v − πhv‖m,K 6 Ch2−m‖v‖2,N (K), m = 0, 1, 2 (3.13)

where N (K) ⊂ Ωh is the union of the neighboring elements of K. We also define an
interpolation operator πlh : L2(Σ)→ (Vh|Σh)l as follows

πlhv = ((πhv
e)|Σh)l. (3.14)

We define the energy norm ||| · |||Σ associated with the exact surface and the norms
||| · |||s and ||| · |||j associated with the stablizing terms by

|||v|||2Σ,k = ‖∇Σv‖2
Σ + ‖kv‖2

Σ, |||v|||2j = j(v, v), |||v|||2s = s(v, v), |||v|||2sr = sr(v, v).
(3.15)

From the results of [?] we deduce approximation results needed in the analysis.

Lemma 3.1 Let u be the exact solution of (??). Then the following estimates hold

|||u−πlhu|||2Σ,k + |||ue−πhue|||2j +
∑
K

‖h−
1
2 (u−πlhu)‖2

∂K∩Σ 6 C(hk)2(1 +h4k4)‖f‖2
Σ (3.16)

|||u− πlhu|||2s 6 C(hk)2(1 + h4k4)‖f‖2
Σ (3.17)

and,
|||πhue|||2j + h2|||πlhu|||2Σ,k + |||πlhu|||2s 6 Ch2(1 + k2)(1 + h2k2)‖f‖2

Σ. (3.18)
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Proof. The bound (??) follows immediately from the approximation results of [?]. For
(??) we apply the triangle inequality followed by the first inequality of Lemma ?? to obtain∑

K∈K

‖∆(u− πlhu) + k2(u− πlhu)‖2
Σ∩K

6 C(‖∆Σu‖2
Σ + ‖tr(κ)∇(πlhuh − ue) · nΣ‖2

Σ + k4‖u− πlhu‖2
Σ)

6 C(1 + k4h4)‖u‖2
2,Σ.

To prove (??) we add and subtract u, use a triangle inequality and apply (??) and (??)
and finally observe that, using the regularity (??) and the equation (??),

h2|||u|||2Σ,k + |||u|||2s 6 Ch2‖f‖2
Σ.

3.3 Error Estimates for the Semi Discretized Formulation

We will first give an analysis for the semi-discretized method (??). This is to show how
the ideas of [?] carries over to the case of approximation of the Helmholtz equation on a
surface, without the technicalities introduced by the discretized surface. The analysis is
based on the observation that we have coercivity on the stabilization terms that constitute
a (very weak) norm on the solution. In this norm we obtain an optimal error estimate. We
then proceed using duality to estimate the error in the L2-norm, independent of the error
in energy norm. Then finally we estimate the error in the energy norm. To simplify the
notation we assume that hk is bounded by some constant, so that higher powers can be
omitted. Observe however that we do not assume that hk is “small enough” here, which
will be necessary when also the domain is discretized in the next section. We first prove a
preliminary lemma that will be useful in the following analysis.

Lemma 3.2 (Continuity) For all v, w ∈ H2(Σ), and vh, wh ∈ Vh, there holds

|a(v + vh, w + wh)| 6 |||v + vh|||s‖h−1(w + wh)‖Σ

+ C|||ve + vh|||j

(∑
K

‖h−
1
2 (w + wh)‖2

∂K∩Σ

) 1
2

. (3.19)

Proof. Using an integration by parts we see that

a(v + vh, w + wh)| =
∑
K

∫
∂K∩Σ

[[∇Σvh]] · n∂K∩Σ(w + wh) dσ

−
∑
K

(∆Σ(v + vh) + k2(v + vh), w + wh)K∩Σ. (3.20)
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We now multiply and divide and with h
1
2 in the first term of the right hand side and with

h in the second. Then we apply the Cauchy-Schwarz inequality and observe that by using
trace inequalities from ∂K ∩ Σ to F ∈ ∂K,∑

K

(h[[∇Σvh]], [[∇Σvh]])∂K∩Σ 6 C|||vh|||2j = C|||ve + vh|||2j . (3.21)

This completes the proof of (??).

Remark 3.1 Observe that by the symmetry of the form a(·, ·) the claim holds also when
v, vh and w,wh are interchanged.

Lemma 3.3 Let u be the solution of (??) and ũh the solution of (??). Assume that the
regularity estimate (??) holds, then

|||u− ũh|||s + |||ue − ũh|||j 6 C(γ−1
i + 1)hk‖f‖Σ, (3.22)

where γi := Im(γ).

Proof. Note that by definition

A(v, v) = ‖∇Σv‖2
Σ − k2‖v‖Σ︸ ︷︷ ︸
∈R

+γ |||v|||2s)︸ ︷︷ ︸
∈R

.

Therefore,
Im(A(v, v)) = γi|||v|||2s

By the condition γi > 0, and the regularity of u we note that there holds

γi(|||u− ũh|||2s + |||ue − ũh|||2j)
= Im(A(u− ũh, u− ũh) + γj(ue − ũh, ue − ũh)). (3.23)

Using now the consistency of the formulation we have by Galerkin orthogonality

γmin(|||u− ũh|||2s + |||ue − ũh|||2j)
= Im(A(u− ũh, u− πhue) + γj(ue − ũh, ue − πhue)) (3.24)

6 |a(u− ũh, u− πhue) + γs(u− ũh, u− πhue) + γj(ue − ũh, ue − πhue)|. (3.25)

By Lemma ?? there holds

|a(u− ũh, u− πhue)| 6 |||u− ũh|||s‖h−1(u− πhue)‖Σ

+ C|||ue − ũh|||j

(∑
K

‖h−
1
2 (u− πhue)‖2

∂K∩Σ

) 1
2

. (3.26)
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For the stabilization terms we use the Cauchy-Schwarz inequality to obtain

|γs(u− ũh, u− πhue) + γj(ue − ũh, ue − πhue)|
6 |γ|(|||u− ũh|||s + |||ue − ũh|||j)(|||u− πhue|||s + |||ue − πhue|||j). (3.27)

The claim now follows by applying Lemma ?? and the regularity estimate (??).

Theorem 3.1 Let u be the solution of (??) and ũh the solution of (??). Assume that the
regularity estimate (??) holds, then

|||u− ũh|||Σ,k 6 CγIm(γ)−1(|γ|+ 1)(hk + h2k3)‖f‖Σ. (3.28)

Proof. First let z be the solution of (??) with the right hand side f = u − ũh. Then by
the finite element formulation (??) there holds

‖u− ũh‖2
Σ = a(u− ũh, z − πhze)− γs(u− ũh, πhze)− γj(ue − ũh, πze). (3.29)

Using Lemma ?? in the first term of the right hand side and the Cuachy-Schwarz inequality
in the second and third we obtathe bound

‖u− ũh‖2
Σ 6 |||u− ũh|||s‖h−1(z − πhze)‖Σ (3.30)

+ C|||ue − ũh|||j

(∑
K

‖h−
1
2 (z − πhze)‖2

∂K∩Σ

) 1
2

(3.31)

+ γi(|||u− ũh|||s + |||ue − ũh|||j)(|||πhze|||s + |||πhze|||j). (3.32)

By interpolation, the definition of z and the regularity of z we obtain

‖h−1(z − πhze)‖Σ 6 Chk‖u− ũh‖Σ (3.33)

|||πhze|||s 6 |||πhze − z|||s + Ch‖u− ũh‖Σ 6 Ch(1 + k)‖u− ũh‖Σ (3.34)

and
|||πhze|||j = |||πhze − ze|||j 6 Chk‖u− ũh‖Σ. (3.35)

Collecting the above bounds and using Lemma ?? we obtain

‖k(u− ũh)‖Σ 6 C(1 + |γ|)hk2(|||u− ũh|||s + |||ue − ũh|||j) 6 Cγh
2k3‖f‖Σ. (3.36)

We may now proceed to bound |||u − ũh|||2Σ,k using the real part of the bilinear form,
Galerkin orthogonality, and the control of the L2-norm of the error.

|||u− ũh|||2Σ,k = Re(A(u− ũh, u− πhue)− γj(ũh, ũh − πhue)) + 2‖k(u− ũh)‖2
Σ. (3.37)

In the first term of the right hand side we now proceed as for (??) using the inequality
(??) and Lemma ?? to conclude that

|A(u− ũh, u− πhue)− γj(ũh, ũh − πhue)| 6 Cγ(hk)2‖f‖2
Σ. (3.38)

We conclude by combining this bound with (??).

14



Lemma 3.4 Under the same assumptions as for Lemma ?? and Theorem ?? there holds

‖u− ũh‖Σ 6 Cγ(hk)2‖f‖Σ (3.39)

and
|||ũh|||Σ,k 6 Cγ(1 + k)‖f‖Σ, |||ũh|||s 6 Cγ(1 + k)h‖f‖Σ. (3.40)

Proof. The first claim follows directly from equation (??). The remaining inequalities are
immediate by adding and subtracting the exact solution u in the norms of the left hand
side, followed by a triangle inequality and then applying the results of Lemma ?? and
Theorem ??.

3.4 Error Estimates for the Fully Discrete Formulation

To obtain an error estimate for the fully discrete scheme we need an equivalent to Lemma
?? for the formulation on the discrete surface and we also need upper bounds of the
conformity error that we commit by approximating the surface. We start by proving these
technical lemmas.

Lemma 3.5 (Continuity) For all v, w ∈ H2(Σ), vh, wh ∈ Vh there holds

|a(v + vlh, w + wlh)| 6 |||v + vlh|||s‖h−1(w + wlh)‖Σ

+ C(|||ve + vh|||j + h|||vlh|||Σ,k)

(∑
K

‖h−
1
2 (w + wlh)‖2

∂K∩Σ

) 1
2

. (3.41)

Proof. The proof of (??) is similar to that of (??), but this time we instead need to prove
the inequality ∑

K

(h[[∇Σv
l
h]], [[∇Σv

l
h]])∂K∩Σ 6 C|||vh|||2j = C|||ve + vh|||2j (3.42)

to conclude. This leads to a slightly different argument since ∇Σv
l
h = B−TP Σh∇vh. It

follows that ∑
K∈Th

∫
Σ∩∂K

h|[[∇Σv
l
h]]|2 dσ 6

∑
K∈Th

‖h
1
2 |[[B−TP Σh∇vh]]|‖2

Σh∩∂K . (3.43)

The right hand side may be bounded as follows∑
K∈Th

‖h
1
2 |[[B−TP Σh∇vh]]|‖2

Σh∩∂K

6 C
∑
K∈Th

(
‖h

1
2 |[[B−TP Σh ]]∇vh|‖2

Σh∩∂K + ‖h
1
2 |[[∇vh]]|‖2

Σh∩∂K

)
. (3.44)
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For the second term in the right hand side we have by a trace inequality from Σh ∩ ∂K to
F ∈ ∂K, ∑

K∈Th

‖h
1
2 |[[∇vh]]|‖2

Σh∩∂K 6 |||vh|||j. (3.45)

For the first term observe that also by repeated trace inequalities, first from Σh ∩ ∂K to
∂K and then from ∂K to K,

‖h
1
2 |[[B−TP Σh ]]∇vh|‖Σh∩∂K 6 C‖[[B−TP Σh ]]‖L∞(Σh∩∂K)h

− 1
2‖∇vh‖Ωh . (3.46)

Now using the regularity of Σ we may write [[B−TP Σh ]] = [[B−TP Σh − B̃
−T
P Σ]] where we

have introduced B̃ := P Σ(I − bκ)P Σ. Expanding this relation we get

B−TP Σh − B̃
−T
P Σ = (B−T − B̃−T )P Σh + B̃

−T
(P Σh − P Σ) = I + II. (3.47)

The term II can be bounded observing that as a consequence of (??)

‖B̃−T (P Σh − P Σ)‖L∞(Σh∩∂K) 6 C‖P Σh − P Σ)‖L∞(Σh∩∂K) 6 Ch (3.48)

For the first term is follows that

I = (B−T − B̃−T )P Σh = B̃
−T

(B̃
T
B−T − I)

= B̃
−T

(B̃
T −BT )B−T = B̃

−T
(P Σ(I − bκ)(P Σ − P Σh))TB−T .

Therefore

‖(B−T − B̃−T )P Σh‖L∞(Σh∩∂K) 6 C‖P Σ − P Σh‖L∞(Σh∩∂K) 6 Ch. (3.49)

The bounds (??) and (??) show that and ‖[[B−TP Σh ]]‖L∞(∂K) 6 Ch. Using this bound
together with (??) and (??) we may write∑

K∈Th

‖h
1
2 |[[B−TP Σh∇vh]]|‖2

Σh∩∂K 6 C(h‖∇vh‖2
Ωh

+ |||vh|||2j). (3.50)

The bound (??) then follows using the arguments of Lemma 4.2 of [?] (see also Lemma 5.3
of [?]) leading to

h‖∇vh‖2
Ωh

6 C(h2‖∇Σhvh‖2
Σh

+ |||vh|||2j) (3.51)

and the norm equivalence ‖∇Σv
l
h‖Σ ∼ ‖∇Σhvh‖Σh .

We will first prove some conformity error bounds that we collect in a lemma.

Lemma 3.6 Let uh be the solution of (??) and assume that hk < 1. Then

|ah(uh, vh)− a(ulh, v
l
h)| 6 Ch2|||ulh‖Σ,k|||vlh|||Σ,k (3.52)

|ls(vlh)− lh(vh)| 6 Cf (h
2|||vlh|||Σ,k + h|||vh|||sr) (3.53)

and
|sh(uh, vh)− sr(ulh, vlh)| 6 Ch2(hk)2|||ulh|||Σ,k|||kvlh|||Σ,k (3.54)
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Proof. For the first term we observe that

|ah(uh, vh)− a(ulh, v
l
h)| 6 |(∇Σhuh,∇Σhvh)Σh − (∇Σu

l
h,∇Σv

l
h)Σ| (3.55)

+ |(k2uh, vh)Σh − (k2uh, vh)Σ|

6 Ch2‖∇Σu
l
h‖Σ‖∇Σv

l
h‖Σ +

∫
Σh

k2uhv̄h(1− |B|)dσh (3.56)

where we used the result on the Laplace-Beltrami part from [?]. For the zero order term
we observe that by (??)∣∣∣∣∫

Σh

k2uhv̄h(1− |B|)dσh
∣∣∣∣ 6 Ch2‖kulh‖Σ‖kvlh‖Σ. (3.57)

For the control of the conformity error of the right hand side we observe that

l(vlh)− lh(vh) =

∫
Σh

fhv̄h(|B| − 1) dσh −
∫

Σh

fhγsh
2k2v̄h dσh (3.58)

The first term on the right hand side was bounded in [?],∫
Σh

fev̄h(|B| − 1) dσh 6 Cfh
2‖vh‖Σ. (3.59)

The second term may be bounded using the Cauchy-Schwarz inequality∫
Σh

fhγsh
2k2v̄h dσh 6 Cfh‖k2hvh‖Σh 6 Cfh‖k2hvlh‖Σ (3.60)

For the Galerkin least squares term we may write

sh(uh, vh)− sr(ulh, vlh) = (h2k2uh, k
2vh)Σh − (h2k2ulh, k

2vlh)Σ. (3.61)

Using the bounds (??) we have

(h2k2uh, k
2vh)Σh − (h2k2ulh, k

2vlh)Σ 6 Ch2(hk)2‖kulh‖Σ‖kvlh‖Σ

An immediate consequence of the previous result is the following bounds on the conformity
error of the form Ah(·, ·).

Corollary 3.1 Let uh be the solution of (??) and assume that hk < 1. Then for all ε > 0,

|Ah(vh, wh)− Ar(vlh, wlh)| 6 Cγh
2||||vlh|||Σ,k|||wlh|||Σ,k (3.62)
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Proof. Follows directly from the previous lemma.

The proof of convergence of the fully discrete scheme now follows the same model as
that of the semi-discrete scheme, estimating this time also the error induced by integrating
the equations on the discrete representation of the surface.

Lemma 3.7 Let u ∈ H2(Σ) be the solution of (??) and uh ∈ Vh be the solution of (??).
Then

|||πlhu− ulh|||2sr + |||πhue − uh|||j 6 Cf,γ(hk) + Cγh|||πlhu− ulh|||Σ,k. (3.63)

Proof. Using the short-hand notation πlhu := ((πhu
e)|Σh)l, we define the discrete error on

Σh and its corresponding lift to Σ by ξh := πhu
e − uh and ξlh := πlhu− ulh, respectively.

Recalling the definition of the scheme on the exact and the discrete surfaces we may
write

γi(|||ξlh|||2sr + |||ξh|||2j) = Im[Ar(ξlh, ξ
l
h) + γj(ξh, ξh)]

= Im[a(πlhu− u, ξlh) + γ(sr(πlhu− u, ξlh) + j(πhu
e, ξh) + sr(u, ξlh))

+ l(ξlh)− lh(ξh) + Ah(uh, ξh)− Ar(ulh, ξlh)].

Note that by applying the triangle inequality followed by Lemma ?? the following bound
holds

|||ξlh|||s 6 C(h|||ξlh|||Σ,k + |||ξh|||j + |||ξlh|||sr) (3.64)

which together with Lemma ?? and an arithmetic–geometric inequality with suitable
weights leads to,

a(πlhu− u, ξlh) 6 C|||ξlh|||s‖h−1(πlhu− u)‖Σ

+ C(|||ξh|||j + h|||ξlh|||Σ,k)

(∑
K

‖h−
1
2 (πlhu− u)‖2

∂K∩Σ

) 1
2

6 C2
f (hk)2 + Ch2|||ξlh|||2Σ,k +

1

8
γi(|||ξlh|||2sr + |||ξh|||2j).

Using this bound and the Cauchy-Schwarz inequality, for the first three terms in the right
hand side we then have

|a(πlhu− u, ξlh) + γsr(πlhu− u, ξlh) + γj(πhu
e, ξh)|

6 C2
f,γ(hk)2 + Ch2|||ξlh|||2Σ,k +

1

4
γi(|||ξlh|||2sr + |||ξh|||2j). (3.65)

Once again using the Cauchy-Schwarz inequality, the bound (??) and the arithmetic–
geometric inequality leads to

sr(u, ξlh) 6 h‖k2u‖Σ|||ξlh|||sr 6 C2
f (hk)2 +

1

4
γi|||ξlh|||2sr
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For the remaining terms we use the result of Lemma ?? to deduce

l(ξlh)− lh(ξh) 6 Cf (h
2|||ξlh|||Σ,k + h|||ξh|||sr)

6 C2
f,γh

2 + h2|||ξlh|||2Σ,k + γi
1

4
|||ξh|||2sr . (3.66)

To bound the conformity error of Ah(·, ·) it is convenient to start from (??) and write

Ah(uh, ξh)− Ar(ulh, ξlh) 6 Ch2|||ulh|||Σ,k|||ξlh|||Σ,k 6 Ch2(|||ξlh|||2Σ,k + |||πlhu|||2Σ,k). (3.67)

By collecting the above bounds and applying (??) we conclude that

Cγ(|||ξlh|||2s + |||ξh|||2j) 6 C2
f,γ(hk)2 + Cγh

2|||ξlh|||2Σ,k. (3.68)

Lemma 3.8 For the error in the L2-norm there holds

‖u− ulh‖Σ 6 Cf,γ(hk)2 + Ch2k|||πlhu− ulh|||Σ,k. (3.69)

Proof. We let z be the solution of (??) with right hand side f = u− ulh. It follows that

‖u− ulh‖2
Σ = a(u− ulh, z − πlhz) + a(u− ulh, πlhz) = I + II. (3.70)

By the continuity of a(·, ·) (Lemma ??), arguments similar to that of (??), the approxima-
tion properties of πlhz and the regularity estimate (??) we have for the first term

I 6 Chk(h|u|2,Σ + h‖∇Σ(πlhu− uh)‖Σ + |||u− ulh|||sr + |||πhue − uh|||j)‖u− ulh‖Σ. (3.71)

Using the definition of the finite element method and (??) and the definition of the reduced
operator on the exact surface (??), we have for the second term

II = l(πlhz)− lh(πhze) + Ah(uh, πhz
e)− Ar(ulh, πlhz) (3.72)

+ γss
r(ulh, π

l
hz) + γjj(uh, πhz

e). (3.73)

Using Lemma ?? in the two first terms and the Cauchy-Schwarz inequality in the two last
we have

II 6 Cf (h
2|||πlhz|||Σ,k + h|||πlhz|||sr) + Cγh

2|||ulh|||Σ,k|||πlhz|||Σ,k (3.74)

+ |||ulh|||sr |||πlhz|||sr + |||uh|||j|||πhze|||j (3.75)

Recalling the equations (??) and (??) and (??) we have that

|||πlhz|||sr + |||πhze|||j 6 C(hk)‖u− ulh‖Σ, |||πlhz|||Σ,k 6 C(1 + hk)‖u− ulh‖Σ (3.76)
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and
|||πlhu|||sr + |||πhue|||j 6 Cf (hk). (3.77)

Adding and subtracting πlhu in all the norms on ulh in (??)–(??) and using a triangle
inequality and the above bounds on norms of πlhz and πlhu we have the bound

II 6 Cf,γhk((hk)+ |||πlhu−ulh|||sr + |||πhue−uh|||j +h|||πlhu−ulh|||Σ,k)‖u−uh‖L2(Σ). (3.78)

By summing up the bounds (??) and (??) we arrive at the inequality

‖u− ulh‖Σ 6 C
(

(hk)2 + hk(|||πlhu− ulh|||s + |||πhue − uh|||j) + h2k|||πlhu− ulh|||Σ,k
)
.

Using the result of Lemma ?? the conclusion follows.

We now use the above lemmas for the fully discrete formulation to prove our main
result, an a priori error estimate in the ||| · |||Σ,k-norm. This result may then be used to
prove stability of the discrete solution under the condition hk small, similarly as in Lemma
??. We leave the details to the reader.

Theorem 3.2 Let u be the solution of (??) satisfying the estimate (??) and let uh be the
solution of (??). Then for hk sufficiently small

|||u− ulh|||Σ,k 6 Cf,γhk(1 + hk2). (3.79)

Proof. First we observe that by the triangle inequality there holds

|||u− ulh|||Σ,k 6 |||πlhu− ulh|||Σ,k + |||u− πlhu|||Σ,k. (3.80)

Since the bound was proven for the second term in the right hand side in Lemma ?? we
only need to consider the first term. Once again we use the notation ξlh := πlhu − ulh and
ξh := πhu

e − uh.
It follows by the definition of A(·, ·) and the assumption that Re[γ] = 0 that

|||ξlh|||2Σ,k = Re(Ar(ξlh, ξ
l
h)) + 2‖k(ξlh)‖2

Σ 6 |Ar(ξlh, ξlh)|+ 2‖kξlh‖2
Σ. (3.81)

The first term on the right hand side may be decomposed as before

Ar(ξlh, ξ
l
h) = Ar(πlhu−u, ξlh)+sr(u, ξlh)+ l(ξlh)− lh(ξh)+Ah(uh, ξh)−Ar(ulh, ξlh)+γjj(uh, ξh).

(3.82)
Using the result of (??) and the inequality (??), we have

Ar(πlhu− u, ξlh) 6 C2
f,γ(hk)2 + h2|||ξlh|||2Σ,k + |||ξlh|||2sr + |||ξh|||2j . (3.83)

Recalling the bound (??) we also have

l(ξlh)− lh(ξh) 6 C2
f,γh

2 + h2|||ξlh|||2Σ,k + |||ξh|||2sr . (3.84)
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Finally, using the bound (??) and after adding and subtracting πlhu and applying the
triangular inequality and the arithmetic–geometric inequality we have

Ah(uh, ξh)− A(ulh, ξ
l
h) 6 Ch2|||ulh|||Σ,k|||ξlh|||Σ,k 6 Ch2(|||ξlh|||2Σ,k + |||πlhuh|||2Σ,k). (3.85)

Applying the results of (??)–(??), (??), the convergence of the stabilizing terms (Lemma
??) and the L2-error estimate (Lemma ??) in (??) we obtain

|||ξlh|||2Σ,k 6 Cf (1 + h2k4)(hk)2 + Ch2(1 + k2)|||ξlh|||2Σ,k. (3.86)

Since hk is assumed to be small, so that Ch2(1 + k2) < 1, the last term in the right hand
side can be absorbed in the left hand side and the proof is complete.

Remark 3.2 Similar estimates as those obtained in Theorems ?? and ?? can be obtained
using the standard approach due to Schatz [?], under the condition hk2 sufficiently small
where the surface curvature also comes into play in the bound. So the above analysis does
not show any reduction of pollution through stabilization, contrary to the one dimensional
situation studied in [?]. Nevertheless we show in the numerical section that the method has
superior performance compared to the unstabilized version for problems close to resonance.
This will be illustrated numerically below in Section ??.

4 Numerical Examples

In the numerical examples below, the L2 errors on the exact surface are approximated by
the corresponding expression on the discrete surface,

‖u− ulh‖Σ ≈ ‖ue − uh‖Σh . (4.1)

4.1 Varying Wave Number

We consider a sphere with radius r = 1/2 and the following stabilization parameters:
γs = i, γj = 10−3i, with i the imaginary unit. We use a fabricated solution

u = (x− 1/2)(y − 1/2)(z − 1/2) (4.2)

and construct the right-hand side accordingly. In Fig. ?? we show a typical discretization
and corresponding approximate solution. In Fig. ?? we show the convergence patterns
for different wave numbers and note that the rate is unaffected though the error constant
increases with increasing wave number.
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4.2 Varying Geometry

In this example, we consider the spheroid with one main axis having length Rmax = 1/2
constant and the other with length Rmin varying. The data are the same as in the previous
example but with constant wave number k2 = 1. In Fig. ?? we show two different spheroids
and in Fig. ?? we show the convergence which is optimal independent of geometry. Finally,
in Fig. ??, we consider a more demanding geometry, defined as the zero isoline of

φ = (x2 + y2 − 4)2 + (z2 − 2)2 + (y2 + z2 − 4)2 + (x2 − 1)2 + (z2 + x2 − 4)2 + (y2 − 1)2 − 15

and in Fig. ?? the corresponding observed convergence using the same parameters as
for the spheroids. Similarly as in the previous example we here observe that the rate is
unaffected by the geometry.

4.3 Stability Close to Eigenvalues

To illustrate the enhanced stability of the stabilized method, we consider the unit sphere
(of radius 1). On this sphere, the non–zero eigenvalues of the Laplace–Beltrami operator
can be analytically computed as λ = m(m + 1), m = 1, 2, . . . [?]. We consider again
the exact solution (??) and compute the L2 error on a fixed mesh under varying k2 close
to the lowest eigenvalue. In Fig. ?? we show how the error behaves using the same
stabilization parameters as above. In Fig. ?? we give a close-up of the error closer to the
eigenvalue, and in Fig. ?? we give the corresponding errors without stabilization. Note
that further closeups would result in further increases of the error for the unstabilized
approximation. With stabilization, the L2 error increases but remains bounded as we
pass the eigenvalue, unlike the case where no stabilization is added. Note that resonance
occurs, in the unstabilized method, for a k2–value slightly higher than k2 = 2, which is to
be expected in a conforming Galerkin finite element method (cf., e.g, [?]).

4.4 Varying Stability Parameters

Here we illustrate the effect of varying the stability parameters. We again consider the
problem in Section ?? with k = 8.3 (close to a discrete eigenvalue). On a fixed mesh
(meshsize twice that of Fig. ??) we let keep one of the γj and γs zero and let the other
vary. The results are shown in Fig. ??. We note that γs has a distinct optimum value
close to 1 and leads to rapidly increasing error when chosen too large, whereas γj reaches
a plateau after passing 1 and no detrimental effect can be seen by increasing it further.
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Figure 2: A discretization of the sphere with corresponding discrete solution.
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Figure 3: Convergence for different wave numbers. Dotted line has inclination 2:1.
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Figure 4: Discretization of spheroids with corresponding discrete solutions.
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Figure 5: Convergence for different spheroid geometries. Dotted line has inclination 2:1.

Figure 6: Discretization of a more complex geometry with corresponding discrete solution.
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Figure 7: Convergence for the geometry of Fig. ??. Dotted line has inclination 2:1.
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Figure 9: Close-up of the error, with stabilization.
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Figure 10: Close-up of the error, without stabilization.
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