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1. Introduction
Sivakumar et al. (2015) present an excellent experimental
study that represents a major advance on efforts to get PL100

(Stone and Phan, 1995), termed the plastic strength limit by
Haigh et al. (2013), into mainstream use. Given the current
efforts underway to revise European soil testing standards (e.g.
Orr, 2015), the paper by Sivakumar et al. is a welcome
addition to the literature. Many authors have attempted to
develop methods of determining the plastic limit using the
cone penetrometer (e.g. Harison, 1988), as the thread rolling
test is regarded by some as crude and inaccurate (e.g.
Sherwood, 1970; Whyte, 1982). Sivakumar et al. offer a mech-
anical alternative to the original test described over a century
ago by Atterberg (1911a, 1911b).

2. Strength variation in the plastic range
Sivakumar et al. rightly report that their plastic limit values
are actually PL100 values as they assumed that the ‘plastic
limit’ occurs at an undrained strength of 170 kPa (100 times
the 1·7 kPa liquid limit proposed by Wroth and Wood (1978)).
Haigh et al. (2013, 2014) presented work showing that the
plastic limit as described by Atterberg (1911a, 1911b) does not
correlate to a fixed strength as it is not a strength test, so these
two different ‘plastic limits’ may not coincide.

Recently, analogous work by Vardanega and Haigh (2014)
utilised a large database of standard fall-cone test results
(80 g–30°) to reveal (among other things) that if the double
logarithmic formulation utilising a logarithmic liquidity index
ILN (Koumoto and Houlsby, 2001) (Equation 4) is assumed,
the implied ratio of undrained strengths between liquid and
plastic limits is found – on average – to be around 83·5
(Equation 5). Similar work investigating the variation of

undrained strength with liquidity index has been reported by
O’Kelly (2013).

4: ILN ¼ lnðw=PLÞ
lnðLL=PLÞ

5:

cu ¼ ðcLÞ83�5ð1�ILNÞ

where

cL ¼ 1�7 kPa
0�2 , IL , 1�1

The data from Figure 7 of the paper under discussion were
digitised by the contributors and transformed onto a cu–ILN
plot (Figure 12), the bounds of the data from Vardanega
and Haigh (2014) are also shown in Figure 12. In order to
convert the data presented of cone penetration d into
undrained strength cu, three steps are required. Firstly, a cone
factor K needs to be assumed, as defined by Hansbo (1957)
(Equation 6), linking the force applied to the cone F to its pen-
etration x

6: F ¼ x2cu
K

Secondly, the validity of this plasticity solution for materials
that are potentially brittle needs to be assumed. Thirdly,
dynamic analysis of the fall-cone test should be carried out as
tests in which a cone penetrates a soil surface with significant
velocity are not self-similar to those in which the cone is
stationary with its tip level with the soil surface at the begin-
ning of the test.
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Dynamic analysis of the fall-cone test implies equating the
potential energy lost by a fall-cone dropped from a height h
above the soil surface with the work done by the force F in
bringing it back to rest at a penetration d. This results in

7: mgðhþ dÞ ¼
ðd
0

x2cudx
K

¼ 1
3
d3cu
K

Hence

8: cu ¼ 3mgKðhþ dÞ
d3

Equation 8 can be used to interpret the data in Figure 7 as
presenting data of the variation of strength with the liquidity
index or logarithmic liquidity index (as given by Equation 5).
These data are shown in Figure 12 together with the bounds of
the database presented in Vardanega and Haigh (2014) for
soils at higher liquidity index (80 g−30o fall-cone data) (note
that few data were sourced for inclusion in the database at
IL < 0·2). It can be seen that use of the logarithmic liquidity
index formulation shows the data to continue on the same linear
trend, both above and below the plastic limit. For any given set
of fall-cone data, the choice of cone factor can shift all the data

points horizontally by the same distance on Figure 12.
However, the slope of the regression to the data would not
change. The high degree of similarity between the slopes of the
data from the three different cones (80 g, 8 kg and 0·727 kg)
suggests that the analysis is valid if an appropriate cone factor is
chosen and that Equation 5 is a good predictor of undrained
shear strength across a wide range of water contents.

3. Sample preparation
Sivakumar et al. (2015) state that sample preparation was done
in accordance with the procedures outlined by Sivakumar
et al. (2009), utilising oven drying during the process. However,
Mesri and Peck (2011: pp. 89–90), in their discussion of the
paper by Sivakumar et al. (2009), cast doubt on the use of
oven drying for sample preparation. Does the sample prep-
aration process cause the material to enter at least a partially
brittle (or cracked) state? The sample was also compacted (in
the mould) and hence was also in an unknown saturation state.
As well as water content, clay strength is also a function of
overconsolidation ratio, saturation and current effective stress
(e.g. Mayne et al., 2009), so if this procedure is adopted for
soil testing in practice, two questions may be posed.

& How can sample preparation be kept consistent enough to
ensure that the test always gives the same answer for the
same material in different laboratories?
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Figure 12. Dataset from the paper under discussion (Sivakumar
et al., 2015) plotted on ILN–ln(cu) axes; bounds and mean
trendline from Vardanega and Haigh (2014) are also shown
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& Does the strength measured during the test have a practical
meaning in terms of the strength variation of clays close to
the plastic limit, or does the variety of states at which com-
pacted soils can exist at these low water contents make this
only valid within the context of this test procedure?

4. Difficulties with standardisation
While Sivakumar et al. (2015) present an excellent experimen-
tal study, the method proposed does not result in a completely
automated mechanical method for determination of the plastic
strength limit (PL100), as clearly sample preparation needs to
be kept consistent between laboratories. While the strength at
the liquid limit is a remoulded strength, with drier samples
close to the plastic limit we have near-zero total stresses but an
unknown amount of suction, so an unknown effective stress
state and hence potentially variable strength. Could the
authors comment on the difficulty (or lack thereof) of this
drive towards standardisation?

Authors’ reply
We thank the contributors for their thorough assessment of
our article. There are essentially two aspects that need
clarification.

1. Repeatability of producing test
specimens for routine applications

The water content at the plastic limit is about 10% (in terms of
the percentage of difference rather than the actual water
content) more than the optimum water content (OWC) for com-
paction (Sridharan and Nagaraj, 2005). If the compaction
energy is high, then the difference will be even greater. For
example, the OWC of kaolin is about 28% based on light com-
paction and about 26% based on heavy compaction, whereas its
plastic limit is about 31%. For fine soils, the degree of saturation
of compacted soil is about 85–90% (depending on the energy
level) and, therefore, if compacted at the plastic limit, it could
be close to 95% or more. For practical purposes, the fall-cone
test specimens can be assumed to be saturated: hence the
density of the compacted soil is practically independent of the
compaction effort. This was also examined as part of the study
under discussion, where test specimens of kaolin were prepared
over a range of water contents close to the plastic limit. It was
found that the bulk density remained generally the same for a
given water content and soil, regardless of the level of compac-
tion applied using the procedure described in the paper.

2. Ratio between undrained shear strengths
at plastic limit and liquid limit

This aspect was discussed in the last part of the article under
discussion. In this, the authors stated the following (Sivakumar
et al., 2015: p. 62).

An equally valid and complementary explanation is obtained by

considering the dynamic cudðLLÞ value of 2·66 kPa (Koumoto and

Houlsby, 2001) mobilised at h=20mm for the British Standard

80 g–30° fall-cone LL apparatus (BSI, 1990). On this basis, the

8 kg–0mm cone set-up would mobilise a dynamic cudðPLÞ value of
266 kPa. Hence the 8 kg cone mass must be reduced by a factor of

approximately 0·87 (i.e. =230/266 and corresponding strength ratio

cuðPLÞ=cuðLLÞ of 87) to 6·948 kg in order to mobilise an equivalent

cuðPLÞ value of 170 kPa in triaxial compression at γ̇ ¼ 79%h.…

However, by considering strain rate effects in the predicted fall-
cone strengths, we later postulated that the strength ratio for
the quasi-static condition appeared to be approximately 87.
Some limited evidence has been presented to support this
claim, although further investigation is required to draw any
firm conclusion.
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