639 research outputs found

    PENGARUH VARIASI PENAMBAHAN UNSUR MAGNESIUM (Mg) TERHADAP SIFAT FISIS DAN MEKANIS MATERIAL SEPATU REM HASIL PENGECORAN HPDC

    Get PDF
    Rem merupakan salah satu bagian dari kendaraan yang mempunyai peran yang sangat penting untuk kenyamanan dan keselamatan pengendara sepeda motor. Salah satu komponen dalam rem adalah sepatu rem. Sepatu rem dibuat dengan material ADC12 melaui proses pengecoran. HPDC (High Pressure Die Casting) merupakan salah satu metode dalam proses pengecoran. Dalam penelitian ini, menggunakan bahan baku ADC12 yang merupakan produk PT. Pinjaya Logam, Mojokerto. HPDC dilakukan dengan tekanan 7 MPa dan variasi penambahan unsur Magnesium (Mg) 0,3 wt%, 0,4 wt%, dan 0,5 wt%. Penelitian karakterisasi yang dilakukan yaitu meliputi uji porositas, uji kekerasan, dan uji struktur mikro sehingga diharapkan dapat memberikan informasi mengenai kualitas produk sepatu rem ADC12 hasil HPDC dengan penambahan unsur Magnesium (Mg). Penambahan unsur magnesium dilakukan melalui proses stirring selama 1 menit dengan kecepatan 65 rpm dengan temperatur penuangan 7000C. Hasil pengujian menunjukkan bahwa semakin besar unsur magnesium yang ditambahkan, porositas semakin berkurang sedangkan nilai kekerasan semakin besar. Kekerasan tertinggi berada pada variasi penambahan unsur Magnesium (Mg) 0,5 wt% yaitu 51,19 HRB. Hal ini terjadi karena solidifikasi terjadi lebih cepat sehingga presipitat tumbuh dengan sempurna yang menyebabkan material memiliki jarak antar butir kristal lebih rapat sehingga sulit terjadi dislokasi pada butir. Presipitat yang terbentuk adalah Magnesium Silikat (Mg2Si). Hasil struktur mikro menunjukkan adanya unsur Al, Si dan presipitat Mg2Si serta terlihat adanya porositas pada produk sepatu rem. Selain itu dapat dilihat bahwa semakin besar penambahan Mg maka ukuran butirnya semakin kecil. Kata Kunci: HPDC (High Pressure Die Casting), ADC12, Mg2S

    The Evolution and Development of Coloniality in Hydrozoans

    Get PDF
    Hydrozoan colonies display a variety of shapes and sizes including encrusting, upright and pelagic forms. Phylogenetic patterns reveal a complex evolutionary history of these distinct colony forms, as well as colony loss. Within a species, phenotypic variation in colonies as a response to changing environmental cues and resources has been documented. The patterns of branching of colony specific tissue, called stolons in encrusting colonies and stalks in upright colonies, are likely under the control of signaling mechanisms whose changing expression in evolution and development are responsible for the diversity of hydrozoan colony forms. Although mechanisms of polyp development have been well studied, little research has focused on colony development and patterning. In the few studies that investigated mechanisms governing colony patterning, the Wnt signaling pathway has been implicated. The diversity of colony form, evolutionary patterns and mechanisms of colony variation in Hydrozoa are reviewed here

    Lithium isotope geochemistry of marine pore waters: Insights from cold seep fluids

    Get PDF
    Lithium concentration and isotope data (δ7Li) are reported for pore fluids from 18 cold seep locations together with reference fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow an empirical relationship between Li concentration and δ7Li (δ7Li = −6.0(±0.3) · ln[Li] + 51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display δ7Li values between +7.5‰ and +45.7‰, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in all cold seep fluids indicate that authigenic smectite–illite is the major sink for light pore water Li in deeply buried continental margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sediments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope fractionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a−1) suffices to convey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus, provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below the actual seafloor fluid escape structure

    An abyssal hill fractionates organic and inorganic matter in deep-sea surface sediments

    Get PDF
    Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention

    Small-scale heterogeneity of trace metals including REY in deep-sea sediments and pore waters of the Peru Basin, southeastern equatorial Pacific

    Get PDF
    Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and porewater from the upper 10 m of an approximately 7.4×13 km2 area in the Peru Basin, in the southeastern equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals, including rare earth elements and yttrium (REY), as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed the surprisingly high spatial small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e., showing a tan color associated with more Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater, with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, and positive YSN anomaly and correlate with the Fe-rich clay layer and, in some cores, also correlate with P. We therefore propose that Fe-rich clay minerals, such as nontronite, as well as phosphates, are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations between sites and within cores, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower-lying areas or precipitation due to shifting redox boundaries
    • …
    corecore