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Abstract

Lithium concentration and isotope data (d7Li) are reported for pore fluids from 18 cold seep locations together with ref-
erence fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine
basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program
follow an empirical relationship between Li concentration and d7Li (d7Li = �6.0(±0.3) � ln[Li] + 51(±1.2)) reflecting Li
release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display d7Li values between
+7.5& and +45.7&, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in
all cold seep fluids indicate that authigenic smectite–illite is the major sink for light pore water Li in deeply buried continental
margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sed-
iments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of
Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings
with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals
and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed
from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope frac-
tionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a�1) suffices to con-
vey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus,
provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below
the actual seafloor fluid escape structure.
� 2010 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

In the past two decades, the behavior of Li isotopes has
been studied in various marine systems, including mid-
ocean ridge and sediment-hosted hydrothermal systems
(Chan et al., 1993, 1994; James et al., 1999), subduction
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zone settings (You et al., 1995; Chan and Kastner, 2000)
and normal coastal and deep-sea sediments recovered by
means of deep-sea drilling (Zhang et al., 1998; James and
Palmer, 2000). Major processes identified to cause devia-
tions from the seawater isotopic composition are adsorp-
tion/desorption reactions (Zhang et al., 1998; James and
Palmer, 2000), formation and transformation of silicate
minerals (Chan and Kastner, 2000; Williams and Hervig,
2005) and leaching of Li from sediments or underlying crust
at high temperature (Martin et al., 1991; Chan et al., 1993,
1994; James et al., 1999). As a result of the accomplished
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work, Li isotopes are considered a promising tracer for the
diagenetic evolution and provenance of pore fluids in over-
pressured sedimentary environments.

The Li isotopic composition of seawater (d7Li: +31&;
Millot et al., 2004) is distinct from mid-ocean ridge basalt
(MORB) (d7Li: +3.4 ± 1.4&; Tomascak et al., 2008) and
clastic, marine sediments (d7Li: �1.5& to +5&; Chan
et al., 2006) and the direction of Li exchange among these
reservoirs is temperature-dependent. Under normal seafloor
conditions, seawater Li is sequestered by authigenic clay
minerals. Since the light isotope, 6Li, is preferentially taken
up, the remaining Li-depleted fluids become isotopically
heavier during this process. By contrast, at elevated temper-
atures, simultaneous leaching of Li from primary minerals
and uptake into secondary minerals shifts the Li isotope va-
lue of fluids between that of seawater and the initial solid
(e.g., Chan et al., 1993, 1994; Zhang et al., 1998; James
et al., 2003). Since both the distribution coefficient between
solid and fluid and the extent of isotope fractionation dur-
ing mineral authigenesis are a function of temperature (Ber-
ger et al., 1988; Chan et al., 1994), mobile fluids in porous
media may undergo multiple stages of Li uptake and loss.
The complex Li isotope signature resulting from this bears
a valuable record of fluid/mineral interaction that is, how-
ever, challenging to unravel.

To better constrain the Li isotope signature of advecting
pore fluids in continental margin sediments, pore water sam-
ples from 18 cold seep locations in varying geological settings
were analyzed for their Li concentration and isotopic com-
position. Literature data of hydrothermal fluids and pore
waters from the Ocean Drilling Program (ODP) were com-
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Fig. 1. Global map showing the study areas (1) Central American margin
Sea, (5) Black Sea and (6) Okinawa Trough. Major tectonic plate bound
information are shown for (1), (3) and (4). Stars indicate the position of s
and water depths.
piled in order to establish a frame of reference for Li isotope
exchange between fluids and solids in related marine systems.
Comparison of the presented results with that reference
frame yields insights into the provenance and diagenetic evo-
lution of cold seep fluids. Two evolutionarily distinct Mes-
sinian brines from the Mediterranean Sea were included in
this study to test whether hypersaline pore fluids are subject
to specific fractionation mechanisms. Eventually, a trans-
port-reaction model is used to retrace fractionation trends
during upwelling of fluids to the seafloor. Besides being of
relevance to studies on the origin and evolution of cold seep
fluids, this article reviews general principles for the interpre-
tation of Li isotope variations in the context of diagenesis
and pore water/mineral interaction in marine sediments.

2. SAMPLES

The following section gives a brief overview about the
geological context of the studied seepage areas (Fig. 1)
and chemical characteristics of the pore fluids. More de-
tailed information may be obtained from the references ci-
ted in the text. The geographical position and water depth
of the sampling locations are summarized in Table 1.

2.1. Regional settings

Upward movement of overpressured fluids is often asso-
ciated with compressional tectonics and subduction related
processes (Hyndman and Davis, 1992). Mound 11, Mud
Pie and Mound Ridge are cold seeps on the Central
American margin (map 1 in Fig. 1) where the Cocos plate
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Table 1
General characteristics of the sampling sites and sediment cores.

Area Location Cruise Station/sampling deviceb Latitude Longitude Water depth (m)

Reference sites

Gulf of Cadiz Reference core MSM1-3 139-MUC2 35�27.560N 8�59.880W 3054
Nile deep-sea fan Reference core POS362-2 MUC28 31�41.580N 29�46.070E 725
(E Mediterranean Sea) Reference core POS362-2 GC2 31�41.630N 29�46.100E 722
Black Sea Reference core M72-3 GeoB11905 (MIC) 41�57.430N 41�16.80E 877

Reference core M72-3 GeoB11974 (GC) 41�57.430N 41�16.800E 884
Okinawa Trough Abyss Venta SO196 95MUC28 24�50.780N 122�42.030E 1394
(NW Pacific Ocean) Abyss Venta SO196 44PC33 24�50.780N 122�42.030E �1390

Swallow chimneya SO196 34GC1 24�50.840N 122�42.000E 1382
E Mediterranean Sea Discovery brine PaleoPass04 28CT (rosette) 35�16.620N 21�41.450E

Bannock brine PaleoPass04 09CT (rosette) 34�17.990N 20�01.720E

Seep sites

Central American margin Mound 11 SO173 TVMUC127 8�55.310N 84�18.220W 1012
(E equatorial Pacific) Mud Pie M66 108/78/27 (PC) 8�59.600N 84�43.680W 1917

Mound Ridge M66 GC219 11�02.450N 87�02.160W 1710
Gulf of Mexico Green Canyon 415 East SO174 TGC3 27�32.610N 90�59.550W 353

Green Canyon Bush Hill SO174 GC8 27�46.980N 91�30.470W 553
Gulf of Cadiz Porto MV MSM1-3 143GC3 35�33.700N 9�30.440W 3860
(NE Atlantic Ocean) Bonjardim MV MSM1-3 130GC1 35�27.820N 9�00.140W 3049

Carlos Ribeiro MV MSM1-3 154GC5 35�47.260N 8�25.360W 2198
Captain Arutyunov MV MSM1-3 174-GC9 35�39.740N 7�19.960W 1322
Captain Arutyunov MV MSM1-3 205GC13 35�39.700N 7�20.080W 1326
Mercator MV MSM1-3 239-GC20 35�17.920N 6�38.700W 353
Mercator MV MSM1-3 263-GC28 35�17.870N 6�38.800W 351

E Mediterranean Sea Napoli Dome MD69 KC11 (PiC) 33�43.280N 24�41.270E 1925
Kazan MV Aegeo04 18GC1 35�25.910N 30�33.710E 1696
Kazan MV MIMES04 07GT (GC) 35�25.920N 30�33.710E 1663
Amsterdam MV Aegeo04 02AP2 (GC) 35�20.000N 30�16.280E 2030
Amsterdam MV Aegeo04 02AP3 (GC) 35�20.000N 30�16.240E 2022
Giza MV POS362-2 GC5 31�40.510N 29�45.000E 666
Giza MV POS362-2 GC34 31�40.540N 29�45.240E 671
North Alex MV POS362-2 GC100 31�58.160N 30�08.160E 483

Black Sea Dvurechenskii MV M72-3 GeoB11977 (MIC) 44�16.890N 34�58.910E 2052
Dvurechenskii MV M72-3 GeoB11978 (MIC) 44�16.940N 34�58.900E 2050
Pechori Mound M72-3 GeoB11955 (GC) 41�58.960N 41�07.540E 1012

a Sediment cores were retrieved in the vicinity of the identically named hydrothermal vent structures.
b MUC, multi corer; PC, push core; GC, gravity corer; PiC, piston corer; MIC, mini corer.
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is subducted beneath the Caribbean plate (Ranero and Von
Huene, 2000; Hensen et al., 2004). Fluid seepage and mud
volcanism on the Mediterranean Ridge is related to subduc-
tion of the African plate beneath the Eurasian plate (Cam-
erlenghi et al., 1992; Robertson et al., 1996; Robertson
and Kopf, 1998). The major mud volcano (MV) areas on
the Mediterranean Ridge are the Olimpi Field on the accre-
tionary prism south of Crete (Napoli Dome) and, further
east, the Anaximander Mountains (Kazan and Amsterdam
MVs) located at the junction of the Hellenic and Cyprus
Arcs (map 4 in Fig. 1; Zitter et al., 2005). Although not di-
rectly related to subduction, mud volcanism in the Black Sea
(Dvurechenskii MV and Pechori Mound) also occurs in the
tectonic context of plate convergence between Africa and
Eurasia (Limonov et al., 1997; Bohrmann et al., 2003; Niki-
shin et al., 2003). By contrast, in the northern Gulf of Mex-
ico (Green Canyon Bush Hill and 415 East) and on the Nile
deep-sea fan (Giza and North Alex MVs) in the eastern
Mediterranean Sea (Roberts and Carney, 1997; Loncke
et al., 2004, 2006), fluid seepage and mud volcanism are
caused by thin-skinned tectonic processes. In these areas,
huge sediment accumulation rates and actively moving salt
bodies in the subsurface create faults along which fluids,
gas and mud are transported to the seafloor. In the Gulf
of Cadiz, mud volcanism and related phenomena are con-
centrated along deeply cutting thrust and strike-slip faults
that are associated with the boundary between the African
and Eurasian plates (Pinheiro et al., 2005; Medialdea
et al., 2009). In a recent study, Scholz et al. (2009) investi-
gated five MVs located on an E–W transect across the Gulf
of Cadiz (map 3 in Fig. 1). Deep-sourced pore fluids from
this transect reflect the transition from continental-sedimen-
tary to oceanic-crustal fluid sources. Scholz et al. (2009) in-
ferred from Sr and Li isotope systematics that deep-seated
faults serve as conduits for fluids originating in the underly-
ing oceanic basement and drew parallels to ridge-flank
hydrothermal systems.

2.2. Diagenetic characterization of pore fluids

Deeply buried sediments on continental margins are
strongly reducing environments. Accordingly, deep-sourced
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pore fluids are, in most cases, devoid of SO4
2� but strongly

enriched in reduced components such as NH4
+, I� and CH4

(e.g., Aloisi et al., 2004; Wallmann et al., 2006a; Fehn et al.,
2007; Gieskes and Mahn, 2007). Many of the pore fluids
investigated here have lower salinities than normal seawater.
Fresh water contributions from dissociating gas hydrates or
groundwater aquifers have largely been ruled out based on
the oxygen and hydrogen isotope composition of the pore
fluids (e.g., Dählmann and De Lange, 2003; Hensen et al.,
2007). Instead, dehydration of clay minerals in the deep sub-
surface is commonly regarded as the major reason for pore
water freshening (Kastner et al., 1991; Moore and Vrolijk,
1992; Dählmann and De Lange, 2003; Hensen et al., 2004,
2007). Clay mineral dehydration processes such as the con-
version of smectite to illite chiefly occur at temperatures be-
tween 60 and 150 �C and are accompanied by K
consumption and the release of Na, B and Li into the ambi-
ent pore water (Ishikawa and Nakamura, 1993; Środoń,
1999; Chan and Kastner, 2000). The release of mobile cat-
ions from sediments continues at temperatures beyond the
typical range for clay diagenesis leading to very high B
and Li concentrations in décollement fluids at subduction
zones and in fluids of sediment-hosted hydrothermal sys-
tems (Butterfield et al., 1994; You et al., 1996; James
et al., 1999; Kastner and Rudnicki, 2004). In some cases
(e.g., Green Canyon 415 East in the Gulf of Mexico, Napoli
Dome in the Mediterranean Sea, Dvurechenskii MV in the
Black Sea), the clay mineral diagenetic signal of pore water
dilution is overprinted by admixing of evaporated seawater
or by dissolution of evaporite minerals (e.g., Dählmann and
De Lange, 2003; Aloisi et al., 2004; Reitz et al., 2007).

In order to investigate the above-described processes
independently from each other, ‘reference’ fluids with a less
complex geochemical evolution have been included in this
study. Shallow pore waters from the Nile deep-sea fan and
the eastern Black Sea show downcore decreasing Li concen-
trations indicating Li uptake by sediments during early dia-
genesis (Zhang et al., 1998; James and Palmer, 2000).
Lithium-rich pore fluids from sediments in the Okinawa
Trough hydrothermal system (Fig. 1) are formed through
interaction of seawater with andesitic volcanic rocks and
terrigenous sediments at temperatures above 300 �C (Glasby
and Notsu, 2003; Konno et al., 2006). Brine samples have
been obtained from two evolutionarily distinct brine basins
in the eastern Mediterranean Sea (map 4 in Fig. 1). While
Bannock brine has evolved through 12-fold evaporation of
seawater and subsequent burial (Vengosh et al., 1998), Dis-
covery brine has formed through dissolution of late-stage
evaporite minerals (mainly bischofite, MgCl2�6H2O) by sed-
iment pore waters (Wallmann et al., 1997).

3. METHODS

3.1. Sediment sampling and pore water recovery

Pore water samples for this study were obtained on sev-
eral cruises using piston and gravity corers equipped with
PVC or tube foil liners, multi or mini corers and ROV-
guided push cores (Table 1). Brine samples were collected
with Niskin bottles mounted on a CTD/rosette (De Lange
et al., 1990). Upon recovery, core liners were sectioned,
sealed and transferred into a cooled laboratory to ensure
subsampling under in situ (i.e., seafloor) temperature. Subs-
amples were taken within regular distance from the length-
wise-cut sediment cores. Multi and mini cores were stepwise
extruded from the liners and cut into 1–3 cm thick slices.
Pore water recovery was done by pressure filtration (argon
gas at 2–5 bar) or by centrifuging (4000 rpm for 20 min).
Pore waters were filtered through 0.2 lm cellulose-acetate
membrane filters and then divided into aliquots for ship-
board and shore-based analyses. Aliquots for cation analy-
ses were acidified (HCl or HNO3, suprapur) to prevent any
mineral precipitation or adsorption. For the same reason,
brine samples were additionally diluted 1:3 with bi-distilled
water. Pore water and brine samples were stored cooled un-
til further processing on land.

3.2. Laboratory analyses

Chlorinity measurements were carried out on-board by
Ion Chromatography (761 IC-Compact, Metrohm) or titra-
tion with 0.01N AgNO3 (Grasshoff et al., 2002). Lithium
was analyzed by Inductively Coupled Plasma Optical Emis-
sion Spectrometry (ICP-OES, JY 170 Ultrace, Jobin Yvon).
The analytical precision based on repeated analysis of
IAPSO seawater standard is <1% for Cl and <5% for Li.
Further information about these routine methods may be
obtained from the IFM-GEOMAR web page.

Lithium isotope analyses were carried out by Multi Col-
lector Inductively Coupled Plasma Mass Spectrometry
(MC ICP-MS, NEPTUNE, ThermoFisher Scientific) after
chromatographical Li separation following a modified pro-
tocol after Tomascak et al. (1999). For ion exchange chro-
matography, a sample aliquot containing 0.5 lg Li was
evaporated and re-dissolved in 1N HNO3 and 80% metha-
nol. Samples with a high molar Na/Li ratio (>�2 � 105)
were subjected to a second or third chromatographical step
using 0.5N HCl and 80% methanol as solvent (modified
after Jeffcoate et al., 2004). The Li recovery after sample
purification was typically >99.9%. The Li standard NIST
SRM 8545 (L-SVEC) and seawater were repeatedly in-
cluded in the chromatographic separation to check the
accuracy of the procedure. The resulting Li isotope values
are reported relative to the standard NIST SRM 8545
according to d7Li = ((7Li/6Li)sample/(

7Li/6Li)standard � 1) �
1000. Repeated analysis of seawater during this study
yielded a d7Li of 30.9 ± 0.3& (2r, n = 9). Further details
on the ion chromatographic and mass spectrometric proce-
dures are given in Wunder et al. (2006, 2007).

Strontium isotope ratios were determined by Thermal
Ionization Mass Spectrometry (TIMS, TRITON, Thermo-
Fisher Scientific) after chemical separation via cation ex-
change chromatography using a Sr-specific resin
(Eichrom). All isotope ratios were internally normalized
to an 86Sr/88Sr ratio of 0.1194. Repeated analysis of the
standard NIST SRM 987 over the course of this study
yielded an average value of 0.710220 ± 17 (2r, n = 12).
For comparison with literature values all 87Sr/86Sr
were normalized to a value of 0.710248 for the NIST
SRM 987.
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3.3. Transport-reaction modeling

A one-dimensional, numerical transport-reaction model
was developed to simulate Li isotope fractionation during
upward advection of pore fluids. Partial differential equa-
tions for solutes follow the classical approach of Berner
(1980):

/ � @½C�
@t
¼
@ / � DS � @½C�@x

� �
@x

� @ð/ � m � ½C�Þ
@x

þ / � R ð1Þ

where [C] is the concentration of dissolved species in pore
water, x is depth, t is time,/ is porosity, DS is the molecular
diffusion coefficient in sediments, m is the vertical advection
velocity of the pore water and R defines all reactions occur-
ring in the simulated sediment domain. The model calcu-
lates the concentration-depth profiles of three dissolved
species (total dissolved Li, 7Li and 6Li) considering the de-
crease in porosity with sediment depth, molecular diffusion,
advective transport of solutes via sediment burial, steady-
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Sediment porosity decreases with depth due to sediment
compaction. Assuming steady-state compaction, the profile
can be approximated by:

/ðxÞ ¼ ð/TOP � /BOT Þ � expð�const � xÞ þ /BOT ð2Þ

where /BOT and /TOP are the porosity at the lower and
upper boundary and const is the attenuation coefficient
for the exponential decrease of porosity with depth. The
burial velocity of solids is expressed as steady-state compac-
tion with:

xðxÞ ¼ 1� /BOT

1� /ðxÞ xBOT ð3Þ

where x(x) represents the depth-dependent burial velocity
and xBOT is the sediment burial velocity at the base of
the model domain. The upward directed pore water velocity
through sediments is composed of the downward burial
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Table 2
Pore water and bottom water (BW) data for Cl, Li, d7Li and 87Sr/86Sr.

Area Location Core Depth (cm) Cl (mM) Li (lM) d7Li (&) 87Sr/86Sr

Reference sites

Gulf of Cadiz 139-MUC2 BW 559 24.0 30.9 0.709179
Nile deep-sea fan MUC28 BW 618 24.6 30.9 0.709200

GC2 109.5 615 19.1 29.1
297.5 610 10.1 30.9 0.709130d

415.5 609 7.18 29.6 0.709100d

Black Sea GeoB11905 1.0 353 14.4 32.3 0.709136d

GeoB11974 301.5 300 4.1 31.9
Okinawa Trough Abyss Vent MUC28 21.0 546 204 5.8 0.709323

44PC33 21.0 553 441 2.7 0.709483
Swallow Chimney 34GC1 36.0 441 347 1.1 0.709788

265.0 392 301 �0.7 0.709829
Mediterranean Sea Discovery brine PP28CTc 3672.0 9550 310 25.0

3677.0 9550 310 25.1 0.708961
3672.0 9560 320 25.0

Bannock brine PP09CTc I-3460 5300 270 24.5
I-3505 5320 280 24.8 0.708650
II-3612 5350 300 24.3 0.708629

Seep sites

Central American margin Mound 11 TVMUC127 19.0 230 13.2 29.6
23.5 230 13.4 29.9 0.708699

Mud Pie 108/78/27 9.0 339 83.9 23.7 0.707320
11.0 345 84.1 24.4

Mound Ridge GC219 510.0 445 11.2 27.6
540.0 424 11.0 27.2 0.709126

Gulf of Mexicoa Green Canyon 415 East TGC3 202.5 5200 414 45.7 0.708629
252.5 5210 428 45.4
302.5 5240 430 44.8 0.708625
302.5-r 44.7

Green Canyon Bush Hill GC8 245.0 849 148 23.3
277.5 903 168 23.6 0.708663
18.0 539 44 24.2 0.708676
62.0 380 160 15.3 0.707668

Gulf of Cadizb Porto MV 143-GC3 102.0 353 204 12.1 0.707534
115.0 344 203 12.2 0.707536

Bonjardim MV 130-GC1 160.0 480 167 19.6 0.708694
180.0 458 188 19.5

Carlos Ribeiro MV 154GC5 200.0 199 122 19.7 0.708208
220.0 199 116 20.0 0.708208

Captain Arutyunov MV 174-GC9 245.0 633 479 16.3 0.709922
205-GC13 270.0 623 503 17.2 0.709910d

Mercator MV 239-GC20 171.0 4280 2770 12.5 0.710626
196.0 4510 2910 12.5 0.710613

263-GC28 116.0 5080 3270 11.9 0.710628
Mediterranean Sea Napoli Dome KC11 832.0 4190 162 17.1

1228.0 4190 159 17.2
1433.0 4190 159 17.7 0.708407

Kazan MV AX18GC1 46.0 254 57.3 16.6
62.5 198 68.0 16.6 0.707938

MS07GT 11.0 672 30.1 30.9
36.0 508 116 14.7 0.707932
173.0 470 60.7 22.7

Amsterdam MV AX02AP2 37.0 383 64.4 22.0
100.0 273 63.8 20.6

AX02AP3 55.0 299 66.8 22.2
76.0 246 65.6 22.1 0.708550

Giza MV GC5 96.5 506 32.4 23.0
190.5 172 20.2 22.8
255.5 137 29.2 20.7 0.707820

GC34 219.5 165 29.1 21.9 0.707642d
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Table 2 (continued)

Area Location Core Depth (cm) Cl (mM) Li (lM) d7Li (&) 87Sr/86Sr

North Alex MV GC100 53.0 427 43.5 20.6 0.706590d

128.0 199 26.3 21.9 0.706587d

203.0 179 30.3 19.6
Black Sea Dvurechenskii MV GeoB11977 30.5 805 1322 7.5 0.708310

33.5 784 1300 7.7
GeoB11978 30.5 786 1240 7.5

33.5 789 1230 7.6
Pechori Mound GeoB11955 121.5 180 249 14.0 0.707890

135.5 170 258 14.1

a 87Sr/86Sr data from Reitz et al. (2007).
b Data from Scholz et al. (2009).
c Water depth in meter below sea surface.
d Measured on samples from neighboring depth interval.
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component modified by compaction and the upward fluid
advection:

mðxÞ ¼ xBOT � /BOT � mTOP � /TOP

/ðxÞ ð4Þ

where m(x) represents the depth-dependent fluid velocity
and mTOP is the upward fluid advection velocity at the sed-
iment surface.

Temperature-dependent molecular diffusion coefficients
of Li were calculated after Boudreau (1997) and corrected
for tortuosity using the following relationship (Boudreau,
1996):

DSðxÞ ¼
DM ðxÞ

1� lnð/ðxÞÞ2
ð5Þ

where DM is the molecular diffusion coefficient in seawater.
The same value of DM was used for both Li isotopes. Tem-
perature variations from bottom water to the lower bound-
ary of the simulated sediment column were also considered
in a depth-dependency of DM.

The rate law for Li precipitation and isotope fraction-
ation as well as the boundary conditions and fitting param-
eters for the model runs are specified in Section 5.2. The
model was run to steady state from arbitrary initial condi-
tions. Finite difference techniques (the method-of-lines
code) were applied to solve the partial differential equations
(PDEs). A set of three PDEs (one for each species) is con-
verted into 200 ordinary differential equations (ODE) giving
the temporal change of species concentration at each depth
interval. The ODE system was set up on an uneven grid with
higher resolution at the surface and solved using the
NDSolve object of MATHEMATICA Version 7.0 (cf. Hen-
sen and Wallmann, 2005; Wallmann et al., 2006b, 2008).

4. RESULTS

Depth profiles for dissolved Li concentrations and molar
Li/Cl ratios are plotted in Fig. 2. Ratios of Li/Cl highlight
deviations from the general salinity trend, i.e., denote con-
sumption or release of Li during chemical reactions. A com-
pilation of d7Li, 87Sr/86Sr as well as Cl and Li concentration
data is given in Table 2. Lithium isotope data of MVs in the
Gulf of Cadiz have previously been published by Scholz
et al. (2009).
Pore fluids from hemipelagic sites are characterized by
downcore decreasing Li/Cl ratios but seawater-like d7Li
values (Fig. 2a and b, Table 2). Hydrothermal fluids from
the Okinawa Trough are considerably enriched in Li and
show comparably light d7Li values between �0.7& and
+5.8&. The d7Li of brine samples varies over a narrow
range from +24.3& to +25.1&.

Most pore water profiles of cold seeps display a mixing
relationship between bottom water concentrations at the
top and an almost uniform concentration in the lower core
section. In accordance with previous studies (e.g., Hensen
et al., 2007; Scholz et al., 2009), pore waters from below
the mixing zone between seawater and upwelling fluid will
be referred to as ‘deep fluid’ in the following sections. Most
deep fluids display Cl concentrations below local bottom
water values (Table 2), which has been ascribed to dilution
with freshwater derived from clay mineral dehydration (cf.
Dählmann and De Lange, 2003; Hensen et al., 2004, 2007;
Haese et al., 2006). Chloride concentrations above seawater
at a few locations have been attributed to dissolution of
evaporite minerals (e.g., Green Canyon 415 East, Reitz
et al., 2007; Mercator MV, Scholz et al., 2009; Napoli
Dome, Dählmann and De Lange, 2003; Dvurechenskii
MV, Aloisi et al., 2004). Lithium enrichments above local
bottom water values or elevated Li/Cl ratios in most cores
indicate release of Li from sediments or rocks during diage-
netic processes. Exceptions are two sites at the Central
American margin (Mound 11, Mound Ridge; Fig. 2e and
g) where Li concentrations and Li/Cl ratios are constant
or even decrease with depth. The d7Li of deep fluids varies
over a broad range from +7.5& at Dvurechenskii MV in
the Black Sea to +45.7& at Green Canyon 415 East in
the Gulf of Mexico (Table 2).

5. DISCUSSION

5.1. Controls on the lithium isotope composition of marine

pore fluids

Most of the cold seep fluids investigated here originate
from much greater sediment depths than may be reached
by conventional coring techniques. A general concept of
the controls on their Li isotope signature may be obtained
by comparing the presented results with reference data that
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have been collected in related marine settings. Fig. 3a pre-
sents a compilation of Li concentration and d7Li data of vent
and pore fluids from normal ridge-crest and sediment-hosted
hydrothermal systems and of deep-seated interstitial fluids
from the ODP (see Electronic Annex for table of data and
references). The interstitial fluids are grouped into low-tem-
perature and high-temperature diagenetic pore fluids
according to the original data interpretation. Processes re-
ferred to as low-temperature diagenesis are cation exchange
and Li uptake by authigenic clay minerals in shallow sedi-
ments (e.g., Zhang et al., 1998; James and Palmer, 2000).
In contrast, Li release from primary minerals at elevated
temperatures (>�50 �C) (You et al., 1995; Chan and
Kastner, 2000) coupled to uptake of Li by secondary miner-
als (James and Palmer, 2000) represents the major high-
temperature diagenetic process. The reference data plotted
in Fig. 3a show a pronounced negative correlation between
d7Li and Li concentration. This general trend may be
expressed by the following empirical relationship:
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grouped into low-temperature diagenetic fluids, high-temperature diagenet
and pore fluids from sediment-hosted hydrothermal systems (Chan et al.,
1999; Chan and Kastner, 2000; James and Palmer, 2000; Foustoukos et al.
Annex. Vertical bars in the inlet on the right-hand side depict the avera
continental crust (Teng et al., 2004) and detrital marine sediments (Ch
logarithmic regression through all reference data (d7Li = �6.0(±0.3) � ln
between seawater Li and Li from fresh MORB (upper array) and the up
calculated using a Rayleigh fractionation model in order to exemplify the
clay minerals at 5 and 350 �C. Nodes on the gray lines depict the fraction
[Li]F = 1.0–0.1). Colored domains in (b) encompass the Li concentrat
diagenesis; II, high-temperature diagenesis; III, ridge-crest hydrotherma
further explanation.
d7Li ¼ �6:0ð�0:3Þ � ln½Li� þ 51ð�1:2Þ ð6Þ

The different fluid types define distinct Li and d7Li
ranges which are ordered according to increasing reaction
temperature within the respective geological systems
(low-temperature diagenetic – high-temperature diagenetic
– hydrothermal). This general sequence is also confirmed
by the new reference data of pore waters from shallow,
hemipelagic sediments and hydrothermal pore fluids from
the Okinawa Trough (Fig. 3a).

5.1.1. Hydrothermal fluids

Fluids from hydrothermal systems plot close to or
within the average range of d7Li values reported for
MORB and detrital sediment, respectively (bars on right-
hand side of Fig. 3a). A straightforward explanation for
this isotopic composition could be simple leaching of Li
from minerals without any further reaction. The d7Li of
a fluid (subscript F) resulting from binary mixing between
M
O

R
B

C
on

tin
en

ta
l c

ru
st

D
et

rit
al

 s
ed

im
en

ts

104

M
O

R
B

C
on

tin
en

ta
l c

ru
st

D
et

rit
al

 s
ed

im
en

ts

(a)

(b)

Seawater
Shallow pore water
Messinian brines,
Mediterranean Sea
Hydrothermal fluids,
Okinawa Trough
Low-temperature diagenesis
High-temperature diagenesis
Ventfluids, ridge- crest
hydrothermal systems
Vent and pore fluids, sediment-
hosted hydrothermal systems

Central American margin
Gulf of Mexico
Gulf of Cadiz
Mediterranean Ridge
Nile deep-sea fan
Black Sea

Reference data

Cold seeps

seep fluids (b). Note logarithmic scale of x-axis. Reference data are
ic fluids, vent fluids from ridge-crest hydrothermal systems and vent
1993, 1994; You et al., 1995, 2003; Zhang et al., 1998; James et al.,
, 2004). A table including all literature data is given in the Electronic
ge isotopic composition of MORB (Tomascak et al., 2008), upper
an et al., 2006). Thick black lines in both diagrams represent the
[Li] + 51(±1.2); R2 = 0.76). Shaded arrays in (a) indicate mixing

per continental crust (lower array). The gray lines in (a) have been
evolution of pore fluids during progressive Li uptake by authigenic
of initial Li (26, 260 and 2600 lM) remaining in the fluid ([Li]PF/

ion and d7Li ranges of reference fluid types: I, low-temperature
l systems; IV, sediment-hosted hydrothermal systems. See text for
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seawater Li (subscript SW) and solid phase Li (subscript
SP) can be written as follows:

d7LiF ¼
½Li�SW

½Li�F
� d7LiSW þ

½Li�SP

½Li�F
� d7LiSP ð7Þ

The shaded mixing arrays in Fig. 3 were calculated
applying a d7LiSW of +31& (Millot et al., 2004) and re-
cently reported d7Li ranges reported for MORB
(+3.4 ± 1.4&; Tomascak et al., 2008) and for upper conti-
nental crust (0.0 ± 1.4&; Teng et al., 2004). The average
d7Li of the upper continental crust by Teng et al. (2004)
is based on a variety of shales, loess, granites and other
crustal composites. This average value is considered the
best estimate of the isotopic composition of terrigenous sed-
iments prior to interaction with fluids in diagenetic or near-
shore hydrothermal environments.

Some of the fluids from sediment-hosted hydrothermal
systems (e.g., those from the Okinawa Trough) plot within
the mixing array between seawater and the upper continen-
tal crust (Fig. 3a) suggesting that their d7Li is dominated by
simple Li release from minerals. Most of the hydrothermal
fluids, however, show a distinct offset from the mixing ar-
rays towards heavier d7Li values. Since isotope fraction-
ation during incongruent mineral dissolution was found
to be negligible (Pistiner and Henderson, 2003), this offset
is commonly attributed to subsequent incorporation of iso-
topically light Li into secondary clay minerals (e.g., Chan
et al., 1993; James et al., 1999). The average d7Li of hydro-
thermal fluids is +8.6 ± 1.3& for sediment-free systems and
+5.7 ± 3.1& for sediment-hosted systems (the shallowest
three samples from ODP Site 1038 in the Escanaba Trough
have not been considered in this calculation because of their
disproportionally high content of pristine seawater; cf.
James et al., 1999). Interestingly, the isotopic offset between
fluids from sediment-free systems and MORB (5.2&) and
fluids from sediment-hosted systems and the upper conti-
nental crust (5.7&) are in remarkable agreement. Differ-
ences in d7Li between the two fluid types reflect the
isotopic difference between the upper continental crust
and the upper mantle, which, in turn, has been attributed
to preferential retention of the light Li isotope during
weathering of crustal material (Teng et al., 2004). Preserva-
tion of this primary signal in hydrothermal fluids is remark-
able, considering the extent of alteration occurring
subsequently to the release of Li in the hydrothermal reac-
tion zone. Higher Li concentrations in fluids from sedi-
ment-hosted hydrothermal systems are attributed to
higher Li concentrations in clastic marine sediment with re-
spect to MORB (Chan et al., 2006; Tomascak et al., 2008)
and, in addition, to the higher extraction efficiency of Li
from sediments (James et al., 2003).

5.1.2. Sediment interstitial fluids

In conformity with pore fluids of sediment-hosted
hydrothermal systems, high-temperature diagenetic pore
fluids are affected by Li release from sediments. Because
of the lower temperatures prevailing in diagenetic environ-
ments, however, less Li is extracted from primary minerals
and relatively more Li is sequestered by secondary minerals
(Berger et al., 1988; James and Palmer, 2000; James et al.,
2003). As a consequence, the pore fluids’ Li concentrations
are lower and their d7Li values are heavier compared to
hydrothermal fluids (Fig. 3a).

Depending on factors such as concentration-depth gra-
dient, pore pressure and heat flow, Li in interstitial fluids
undergoes advective and diffusive transport. In either case,
pore water Li is unlikely to remain in contact with alter-
ation products. As a consequence, the d7Li of the remaining
pore fluid (subscript PF) can be approximated by a Ray-
leigh-type equation:

d7LiPF ¼
½Li�PF

½Li�F

� �a�1

� ðd7LiF þ 103Þ � 103 ð8Þ

The Li concentration and d7Li evolution of fluids during
progressive Li loss to authigenic clay minerals is illustrated
in Fig. 3a. Starting values lie on the mixing line between
seawater Li and Li derived from sediments at 100-fold,
10-fold and normal seawater concentration. Fractionation
factors between authigenic clay minerals and pore fluids
for low and high temperature end members were taken
from Chan et al. (1994): amineral–fluid = 0.981 for 5 �C and
amineral–fluid = 0.996 for 350 �C.

Most pore water Li data that have been published so far
for diagenetic environments may be explained with a com-
bination of mixing with Li from sediments or rocks (see
Section 5.1.1) and Raleigh fractionation during formation
of secondary minerals (Fig. 3b). The increasing distance
of the general trend from the mixing arrays towards lower
Li concentrations reflects the enhanced isotope fraction-
ation at lower temperatures (Chan et al., 1994). Most fluids
from low-temperature diagenetic environments are charac-
terized by lower Li concentrations than seawater. Many of
these fluids display heavier d7Li values than seawater and
plot close to the Rayleigh distillation line corresponding
to Li uptake by secondary minerals at 5 �C (Fig. 3a). Other
low-temperature diagenetic fluids, however, show d7Li val-
ues equal to or even below seawater. Likewise, new Li data
of pore waters from surficial hemipelagic sediments on the
Nile deep-sea fan and in the eastern Black Sea show seawa-
ter-like d7Li values throughout the core (Table 2) although
downward decreasing Li concentrations within the upper
four meters indicate shallow Li removal (Fig. 2a and b).
This combination of d7Li and Li concentration cannot be
produced through isotope fractionation during incorpora-
tion of seawater Li into secondary minerals at low temper-
ature. Instead, another Li-consuming process, involving
less or no isotope fractionation, has to be considered.

In the crystal lattice of clay minerals, Li either replaces
Mg in the structural, octahedral sites or it occupies the
interlayers as an adsorbed cation. While structural incorpo-
ration produces a significant isotope fractionation, this is
not necessarily the case for Li adsorption (Vigier et al.,
2008). For instance, sorption experiments with vermiculite
and kaolinite resulted in a significant Li isotope fraction-
ation (amineral–fluid up to 0.971; Zhang et al., 1998). By con-
trast, Pistiner and Henderson (2003) and Vigier et al. (2008)
observed no isotope fractionation during Li adsorption
onto smectite. Smectite is the predominant clay mineral
on the Nile deep-sea fan and in the eastern Black Sea
(Venkatarathnam and Ryan, 1971; Stoffers and Müller,
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1978). Accordingly, the downcore Li decrease in pore water
at these sites is attributed to adsorption rather than struc-
tural incorporation. The large scattering of the low-temper-
ature diagenetic fluids around seawater values suggests that
adsorption onto smectite, or other mechanisms involving
no or little isotope fractionation, play an important role
in shallow marine sediments.

5.1.3. Cold seep fluids

The overall pattern of processes identified in the previ-
ous sections may be used as a general frame of reference
for Li isotope exchange between fluids and silicate minerals
in marine systems. Comparing signatures of the cold seep
fluids with that reference frame is anticipated to reveal
information about their origin and diagenetic evolution.

Fig. 3b shows the Li concentration and d7Li data of
deep fluids from cold seeps along with the compositional
ranges of reference fluids (cf. Fig. 3a). Most of the cold seep
fluids plot within the domain characteristic for high-tem-
perature diagenetic environments. Many of the reference
samples in this domain are décollement fluids whose Li iso-
topic composition has been explained with sediment dehy-
dration reactions deep within subduction zones.
Laboratory experiments conducted by Williams and Hervig
(2005) revealed extensive uptake of isotopically light Li
from solution during illitization of smectite. Release of Li
from sediments at temperatures >60 �C and incorporation
into authigenic smectite–illite is in excellent agreement with
the ubiquitous diagenetic signal of pore water freshening
and other indicators for high-temperature fluid/sediment
interactions at all seep locations investigated (Table 2;
Dählmann and De Lange, 2003; Aloisi et al., 2004; Hensen
et al., 2004, 2007; Haese et al., 2006; Reitz et al., 2007).
However, some of the cold seep fluids plot within other do-
mains (e.g., hydrothermal or low-temperature diagenetic)
suggesting a differing or more diverse combination of pro-
cesses or influencing factors.

Pore fluids of two seep locations on the Central Ameri-
can margin, Mound 11 and Mound Ridge, display compa-
rably heavy isotopic compositions close to seawater. At
these sites, little downcore deviation from the Li/Cl ratio
of seawater indicates that Li has not been involved in chem-
ical reactions to a significant extent (Fig. 2e and g).

Two seep sites, Dvurechenskii MV in the Black Sea and
Mercator MV in the Gulf of Cadiz, plot within the domain
of sediment-hosted hydrothermal systems. The fluid com-
position of Dvurechenskii MV is in excellent agreement
with the empirical relationship between d7Li and Li concen-
tration in marine systems (Fig. 3b). Therefore, it is reason-
able to anticipate fluid-sediment interactions at
temperatures beyond the range typical for clay mineral dia-
genesis (>150 �C) at this location. In case of Mercator MV,
however, fluids have disproportionately high Li concentra-
tions compared to their d7Li value (Fig. 3b). Scholz et al.
(2009) attributed the exceptionally high Li content of
deep-sourced pore fluids in the Gulf of Cadiz to the terrig-
enous/continental provenance of sediments in this area.
Felsic continental rocks are moderately enriched in Li com-
pared to mafic material (Wedepohl, 1978). Moreover, Li is
retained in minerals during chemical weathering and addi-
tional Li is taken up during transport of eroded solids into
the ocean (Rudnick et al., 2004; Kısakürek et al., 2005). As
a result, terrigenous sediments and sedimentary rocks have
very high Li concentrations, sometimes exceeding
100 mg kg�1 (Teng et al., 2004; Chan et al., 2006). The
influence of the provenance and/or composition of marine
sediments on the Li concentration of adjacent pore fluids
is further illustrated in a plot of 87Sr/86Sr versus Li concen-
tration in Fig. 4. All cold seep fluids which have undergone
appreciable interaction with sediments or rocks show a po-
sitive correlation between 87Sr/86Sr and Li concentration.
Pore fluids of Mercator MV, the shallowest seep site in
the Gulf of Cadiz (map 3 in Fig. 1), have the most radio-
genic 87Sr/86Sr ratios and the highest Li concentrations (Ta-
ble 2). Accordingly, they are considered the terrigenous/
continental deep fluid end member.

In contrast to that, pore fluids of Mud Pie on the Cen-
tral American margin and seep locations on the Nile
deep-sea fan display the least-radiogenic 87Sr/86Sr ratios
and the lowest Li concentrations (Table 2, Fig. 4). Siliciclas-
tic sediments in these areas are derived from Cenozoic,
mostly mafic volcanic rocks in the Central American Arc
(Kimura et al., 1997) and the Ethiopian highlands (Ryan
et al., 1973; Foucault and Stanley, 1989), respectively. Be-
cause of the comparably low Li content of their catchment
rocks (Wedepohl, 1978), rivers draining such volcanic ter-
rains have lower Li concentrations in their bed load and
suspended matter (<20 mg kg�1 in rivers on the Azores
and Iceland; Pogge von Strandmann et al., 2008, 2010) than
rivers draining continental rocks (up to several 100 mg kg�1

in Himalayan rivers; Kısakürek et al., 2005). As a conse-
quence, young volcanogenic sediments on the Central
American margin and the Nile deep-sea fan contain less
leachable Li than the old and extensively weathered terrig-
enous sediments of the Gulf of Cadiz. Moreover, alteration
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of labile volcanic minerals and ash particles to smectite and
zeolites in the sediments may further deplete ambient pore
fluids in Li (Kastner and Rudnicki, 2004). Therefore,
non-radiogenic 87Sr/86Sr ratios are coupled to lower dis-
solved Li concentrations and comparably high d7Li values
in these areas (Fig. 3b). Owing to intense alteration of vol-
canic matter, smectite is a major constituent of sediments
on both the Nile deep-sea fan and the Central American
margin (Venkatarathnam and Ryan, 1971; Spinelli and
Underwood, 2004). It was shown in Section 5.1.2 that
adsorption of Li onto smectite may remove a considerable
portion of dissolved Li from pore water, without causing
any isotope fractionation. Due to this process, seep fluids
of the Nile deep-sea fan display disproportionally low Li
concentrations compared to their d7Li values and plot in
the transition area between the high-temperature and the
low-temperature diagenetic domains in Fig. 3b. Smectite
has the largest cation exchange capacity of the common
clay minerals in marine sediments (Stumm and Morgan,
1995) and is most abundant on convergent margins and
in other volcanogenic settings (Griffin et al., 1968). In addi-
tion to alteration of ash, Li adsorption is likely to limit pore
water Li concentrations in such areas. As a consequence,
seep fluids with the least-radiogenic 87Sr/86Sr ratios and
low Li concentrations in Fig. 4 are considered the volcano-
genic deep fluid end member.

Pore fluids of the cold seep Green Canyon 415 East in
the Gulf of Mexico display particularly high Li concentra-
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brines. Pore water profiles of different cores from the same site resemble
Gray lines and squares in (a) and (b) depict the chemical evolution of sea
minerals: 0, seawater; 1, gypsum; 2, halite; 3, epsomite; 4, sylvite; 5, carna
in (a) depicts Na/Cl ratios of unity. Due to the reduced salinity in the Blac
plot with adapted scale. The black line in (c) represents the empirical rela
(cf. Fig. 3a). Note logarithmic scale of x-axis in (c).
tions and d7Li values beyond any of the reference domains
(Fig. 3b). Comparison with the Rayleigh distillation lines in
Fig. 3a demonstrates that near-complete scavenging of Li
during transport at low temperature could have produced
this fluid composition. Alternatively, anomalously high
d7Li values and Li concentrations could be related to the
strongly increased salinity of the fluids (Cl >5000 mM; Ta-
ble 2), i.e., to fractionation mechanisms specifically related
to brine formation.

5.1.4. Marine brines

Evaporite beds and local occurrences of evaporated and
infiltrated seawater, also referred to as primary brines, are
common features in deeply buried continental margin sed-
iments. Interaction of pore fluids with evaporite minerals
or mixing with a primary brine can lead to a significant
alteration of the original diagenetic signal. Many deep-
seated pore fluids reveal coinciding enrichments of Li, Cl
and Na (e.g., Bernasconi, 1999; Aloisi et al., 2004; Reitz
et al., 2007; Scholz et al., 2009). A systematic investigation
of Li isotopes in hypersaline, sedimentary environments is
therefore an important prerequisite to apply the general
reference frame, outlined in previous sections, to these
fluids.

Fig. 5a shows Na and Cl data for all cold seep fluids
with elevated salinity as well as for the Discovery and
Bannock brines. The evaporation pathway of seawater
and a line denoting Na/Cl ratios of unity are shown for
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comparison. All hypersaline pore fluids contain equimolar
proportions of Na and Cl which indicates that dissolution
of halite (NaCl) is the most common reason for elevated
pore water salinities at cold seeps. Proportions of Li to
Cl, however, strongly diverge from each other (Fig. 5b) sug-
gesting that the Li enrichments are not related to halite dis-
solution. This inference is corroborated by the chemical
composition of Discovery brine which has evolved through
dissolution of late-stage evaporite minerals (mainly bischo-
fite; Wallmann et al., 1997). Although late-stage evaporite
minerals are by far more enriched in Li than halite (Sonnen-
feld, 1984), Li concentrations of the Discovery brine fail to
reach those measured in the pore fluids.

Since Li contributions from evaporite minerals are min-
or, significant effects on the d7Li of pore fluids are only to
be expected if the isotopic composition of the evaporite-
derived Li strongly diverges from that of the fluids. The
d7Li of pore fluids and brines is plotted versus Li concentra-
tions in Fig. 5c. Most of the samples, including the Bannock
and Discovery brines, plot close to the general relationship
between d7Li and Li concentration in marine systems
(cf. Fig. 3a). The isotopic compositions of the Bannock
and Discovery brines are almost indistinguishable, although
their chemical evolution is entirely different. This clearly
shows that the offset in d7Li from seawater in both cases
has not been produced during evaporation or precipitation
of evaporite minerals. Two studies have addressed the Li iso-
topic composition of brines so far. Bottomley et al. (1999)
analyzed brines of the Canadian Shield and inferred a mar-
ine origin based on d7Li values close to modern seawater. In
contrast, Chan et al. (2002) found d7Li values lighter than
seawater (d7Li: +18.2& to +27.0&) in Messinian oil field
brines in Israel and attributed this to Li release from ambient
sediments. This explanation is somewhat problematic in the
present case, since Li concentrations of the Bannock brine
are in good agreement with its evolution through 12-fold
evaporation of seawater (Cl = �5300 mM; Table 2).

Another possible, but yet unexplored, reason for isoto-
pic differences between brines and modern seawater are
temporal changes in basin chemistry due to prolonged iso-
lation from the global ocean. Müller and Mueller (1991) re-
ported a shift of 87Sr/86Sr ratios below that of Messinian
seawater in Mediterranean evaporites of upper Messinian
age (87Sr/86Sr decrease from 0.7089 to 0.7086). The authors
attributed this trend to the increasing proportion of Sr de-
rived from the Nile river (87Sr/86Sr = 0.7076; Müller and
Mueller, 1991) in the isolated Mediterranean basin. In gen-
eral, Li dissolved in river water has an isotopic composition
intermediate between seawater and the catchment rocks
(mean d7Li of major world rivers: +23.4&; Huh et al.,
1998). Consequently, a temporal shift towards less radio-
genic 87Sr/86Sr ratios in the isolated Mediterranean basin
should have been accompanied by a decrease in d7Li as
well. The 87Sr/86Sr ratio of the Bannock brine is in agree-
ment with the decreased Mediterranean seawater ratio dur-
ing the late Messinian (87Sr/86Sr = �0.7086; Table 2) and,
thus, with an offset in d7Li from the world ocean. By con-
trast, the 87Sr/86Sr ratio of the Discovery brine is equal to
the global Messinian ratio (87Sr/86Sr = �0.7089; Table 2).
Therefore, temporal changes in basin chemistry towards
the upper Messinian could explain for differences in d7Li
among the two brines (0.5& on average). The overall isoto-
pic offset from global seawater (P6&), however, must be
caused by a different mechanism.

The above discussion has demonstrated that the Li iso-
tope signature of brines is entirely independent from the ac-
tual brine formation. Instead, isotopic exchange with
ambient sediments during burial or upward transport must
have transferred isotopically light Li into the saline solu-
tions. The Li isotope signature resulting therefrom follows
the empirical relationship between d7Li and Li concentra-
tion in marine systems (Fig. 5c). It is therefore deduced that
Li isotope systematics of marine brines do not reveal frac-
tionation mechanisms other than those observed in marine
environments that have normal salinities.

5.2. Lithium isotope fractionation during fluid advection

Lithium isotope constraints on the origin and evolution
of pore fluids from comparison with reference fluids are
limited by the differing modes of transport in the respective
geological systems. In bare ridge-crest and most sediment-
hosted hydrothermal systems, fluids are rapidly transferred
to the seafloor through vigorous convection within the oce-
anic crust or overlying sediments (Fisher, 2004). In non-
advective interstitial waters of hemipelagic sediments, Li
moves slowly along a concentration-depth gradient through
molecular diffusion. In either case, most of the Li isotope
fractionation recorded in the d7Li of fluids is likely to have
occurred in a relatively narrow temperature range. This is
an important prerequisite for the validity of the Rayleigh
distillation approach outlined in Section 5.1.2. Compared
to hydrothermal systems, fluid advection at cold seeps is
much slower and subject to strong temporal fluctuations
(e.g., Castrec et al., 1996; Haese et al., 2006; Hensen
et al., 2007). Pore fluids leach Li from deeply buried sedi-
ments at a depth of several km below seafloor and at tem-
peratures between 50 and �200 �C. Because of low Darcy
velocities, fluids may cool down during upward transport
and Li exchange due to mineral authigenesis is likely to oc-
cur at multiple temperatures. Consequently, the accompa-
nying isotope fractionation cannot be approximated with
a single fractionation factor and the aforementioned Ray-
leigh approach is not applicable anymore.

In order to evaluate the influence of varying transport
modes on the extent of Li isotope fractionation, we applied
a transport-reaction model to simulate the ascent of deep-
seated pore fluids to the seafloor. A similar approach has
been adopted by James et al. (1999) to model Li isotope sys-
tematics of fluids in the Escanaba Trough sediment-hosted
hydrothermal system. The height of the modeled sediment
column and the boundary conditions were chosen to em-
brace as much of the heterogeneity encountered at the var-
ious seep and reference sites as possible. Although such a
generalized model scenario cannot explain specific pore
water profiles at single sites, it may well be used to retrace
the major fractionation trends identified in Fig. 3. The
adopted sediment thickness of 2 km represents an interme-
diate value between typical fluid mobilization depths at cold
seeps (�2 to >5 km; Kopf, 2002) and basement depths at



Table 3
Properties and boundary conditions applied in the numerical
transport-reaction model.

Parameter Value

Column length 2000 m
Temperature, sediment surface, TTOP 5 �C
Temperature, lower boundary, TBOT 65 �C
Porosity, sediment surface, /TOP 0.8
Porosity, lower boundary, /BOT 0.2
Attenuation coefficient, const 1 � 10�5 cm�1

Sediment burial velocity, lower boundary, xBOT 0.01 cm a�1

Upward fluid velocity, mTOP 0–0.3 cm a�1

Rate constant for Li precipitation, kPPT 1 � 10�4 a�1

Li concentration, sediment surface, [Li]TOP 26 lM
Li concentration, lower boundary, [Li]BOT 2600 lM
d7Li, sediment surface +31&

d7Li, lower boundary +0.3&
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Fig. 6. Plot of d7Li versus Li concentration showing results of the
transport-reaction modeling. Note logarithmic scale of x-axis. The
model simulates Li isotope fractionation during vertical transport
of deep-seated pore fluids to the seafloor at different upward
advection rates: 1, mTOP = 0.0 cm a�1; 2, mTOP = 0.003 cm a�1; 3,
mTOP = 0.03 cm a�1; 4, mTOP = 0.3 cm a�1. Circles represent mea-
sured data of cold seep fluids. The colored domains depict the
compositional ranges of reference fluid types: I, low-temperature
diagenesis; II, high-temperature diagenesis; III, ridge-crest hydro-
thermal systems; IV, sediment-hosted hydrothermal systems.
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sediment-hosted or ridge-flank hydrothermal systems (�0.1
to >1 km; e.g., Davis et al., 1997; Fouquet et al., 1998). The
Li concentration and d7Li value at the upper boundary cor-
respond to average seawater values. The d7Li value at the
lower boundary has been calculated from the mixing rela-
tionship between seawater and continental crust (Eq. (7))
assuming a Li concentration hundred times that of seawater
(i.e., 2600 lM). This concentration is in the upper range of
values observed for cold seep and hydrothermal fluids
(Fig. 3). Concentrations of 6Li and 7Li were calculated from
d7Li values assuming a 7Li/6Li ratio of 12.02 for the NIST
SRM 8545 (Flesch et al., 1973).

It is known from laboratory experiments that the Li
distribution coefficient between secondary minerals and flu-
ids increases exponentially with decreasing temperature
(Berger et al., 1988). However, the actual amount of Li
sequestered by different minerals at a given temperature
turned out to be strongly variable (Berger et al., 1988).
For the present transport-reaction model, we have to con-
sider a wide variety of mineral assemblages. Moreover,
the amount of secondary minerals formed at the various
sites is essentially unknown. For that reason, the following
function was applied as a first order rate law for Li removal
into secondary minerals:

RLiPPT ðx; tÞ ¼ kPPT � expð�0:5 � T Þ � ½Li�PF ðx; tÞ ð9Þ

In agreement with Berger et al. (1988), the amount of Li
precipitated (subscript PPT) depends on the Li concentra-
tion in the fluid and increases exponentially with decreasing
temperature (T). The coefficient in the exponent was deter-
mined by adjusting the model to the general relationship
between Li concentration and d7Li depicted in Fig. 3. The
rate constant for Li precipitation, kPPT, characterizes the
ability of different sediment types to form authigenic clay
minerals. A kPPT of 1 � 10�4 a�1 has proven to fit most
of the variance in the data set. Temperature-dependent Li
fractionation factors for Li uptake by authigenic minerals
were calculated according to the empirical relationship by
Chan et al. (1994) (aPPT –PF ¼ �1� 10�7T 2 þ 8 � 10�5Tþ
0:981; T in �C). The amount of 6Li and 7Li precipitated
was obtained from the general equation defining the isotope
fractionation factor:

aPPT –PF ¼
7Li
6Li

h i
PPT

7Li
6Li

� �
PF

¼
½7Li�PPT
½6Li�PPT

½7Li�PF
½6Li�PF

ð10Þ

by substituting [7Li]PPT with [Li]PPT � [6Li]PPT:

½6Li�PPT ¼
½Li�PPT

aPPT –PF � 7Li
6Li

� �
PF
þ 1

� 	 ð11Þ

Note that ongoing leaching of Li during transport is not
considered in the model. All parameters used to produce
the model curves are summarized in Table 3 and in the cap-
tion of Fig. 6.

Model scenarios 1–4 (lines in Figs. 6 and 7) simulate
transport of deep-seated fluids through sediments at a
common rate constant, kPPT, but varying upward fluid
advection rates. Fluid advection rates were chosen to rep-
resent regional averages for sedimentary settings that are
influenced by fluid seepage (e.g., Davie and Buffett,
2003; Hensen and Wallmann, 2005). In the absence of ac-
tive upward advection, most of the dissolved Li is rapidly
precipitated and the model curve traverses the domain of
low-temperature diagenetic pore fluids (curve 1; Fig. 6).
Since much of the isotope fractionation in that scenario
occurs in a narrow temperature range close to bottom
water conditions, the resulting curve runs roughly parallel
to the 5 �C-Rayleigh distillation line in Fig. 3a. At a low
advection rate of 0.003 cm a�1, the effects of sediment
burial, compaction and active fluid flow cancel out each
other. A linear concentration-depth gradient (curve 2;
Fig. 7a) indicates that deep-sourced Li is transported up-
wards by molecular diffusion. Because of the slowness of
this transport mechanism, however, intense precipitation
of light Li prevents the deep-seated signal from reaching
the sediment surface (Fig. 6). The model curve corre-
sponding to a moderate advection rate of 0.03 cm a�1
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traverses the lower half of the high-temperature diagenetic
domain and follows the major trend of cold seep fluids
(curve 3; Fig. 6). The mixing zone between seawater and
the original deep fluid is shifted into the uppermost
200 m of the modeled sediment column (Fig. 7). This
demonstrates that moderate pore water movement suffices
to transmit a considerable portion of the deep-seated Li
isotope signal into shallow sediments.

Increasing the advection rate by another order of magni-
tude results in Li concentrations and d7Li values equal to
that of the original deep fluid in the entire sediment column
(curve 4; Figs. 6 and 7). This is in agreement with field
observations at the eastern flank of the Juan de Fuca Ridge
where hydrothermal basement fluids percolate through up
to 900 m thick hemipelagic sediments. Because of low base-
ment temperatures, the original Li concentration of fluids in
that area is quite different from the one adopted in the pres-
ent model. Nonetheless, Wheat and Mottl (2000) demon-
strated, based on a comparative study of spring and pore
fluids, that almost unaltered basement fluids may reach
the top of the sediment column if fluid advection rates ex-
ceed a few mm a�1. In an analogous manner, preservation
of the deep-seated Li signal in fluids of Dvurechenskii
MV may be explained with the high fluid advection rates
prevailing at this site (Figs. 2t and 3b; Aloisi et al., 2004).
Higher temperatures at the model boundaries would further
decrease Li precipitation during upward transport and,
thus, result in an even more pristine isotope signal at the
sediment surface. The effect of high temperatures
(>300 �C) and advection rates on the d7Li of pore fluids is
clearly demonstrated at Swallow Chimney, Okinawa
Trough (Fig. 3). At this site, rapid upward transport of flu-
ids has pushed the mixing zone between seawater and
hydrothermal pore fluids beyond the sediment/bottom
water interface (Fig. 2d) and the d7Li values are the lightest
observed throughout this study.

6. SUMMARY AND CONCLUSIONS

In the present study, we evaluated the applicability of Li
isotope systematics as a tracer for the origin and diagenetic
evolution of pore fluids at cold seeps and similar submarine
fluid escape structures. For that purpose, we established a
general reference frame for Li isotope fractionation in mar-
ine systems. The major findings are summarized as follows:

(1) Literature data for fluids from bare ridge-crest and
sediment-hosted hydrothermal systems as well as
interstitial waters from normal ODP cores show a
pronounced negative correlation between d7Li and
Li concentration reflecting Li release from sediments
or rocks and/or uptake of Li during clay mineral
authigenesis.

(2) Most cold seep fluids are in good agreement with this
general trend and show higher Li concentrations and
lower d7Li values than seawater. A common signal of
clay mineral dehydration in most cold seep fluids
indicates that diagenetic smectite/illite is the major
sink for light pore water Li. Deviations from the gen-
eral correlation trend are attributed to particularities
in sediment composition and to transport-related
fractionation mechanisms.

(3) Pore fluids on passive margins receive high amounts
of Li from intensely weathered, terrigenous and con-
tinental material. In contrast, on convergent margins
and in other settings with strong volcanogenic input,
Li concentrations in pore water are lower because of
intense Li uptake during alteration of volcanic glass
and other labile components. In addition, adsorption
of Li by smectite at low temperature may exert an
important control on pore water Li in volcanogenic
settings. Separate investigation in shallow sediments
revealed that this process is not accompanied by iso-
tope fractionation.

(4) The isotopic composition of two evolutionarily dis-
tinct Mediterranean brines is in good agreement with
the general correlation trend. It is inferred that saline
pore fluids are generally not affected by fractionation
mechanisms specifically related to evaporation or
evaporite dissolution.

(5) Application of a numerical transport-reaction model,
simulating Li isotope fractionation during active
upward transport of fluids, revealed that little
upward advection suffices to transfer deep-seated dia-
genetic Li signals into shallow sediments. Once the
advection rate exceeds a few mm a�1 (assuming nor-
mal sedimentation rates) deep fluids that are almost
unaltered by shallow fractionation processes may
reach the upper end of the sediment column. The
modeling results show that, if carefully applied, Li
isotope systematics of cold seep fluids may provide
a valuable record of fluid/sediment or fluid/rock
interaction that has been inherited several hundreds
or thousands of meters below the seafloor.
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Klaucke I., Krastel S., Leder T., Polikarpov I., Saburova M.,
Schmale O., Seifert R., Volkonskaya A. and Zillmer M. (2003)
Mud volcanoes and gas hydrates in the Black Sea: new data
from Dvurechenskii and Odessa mud volcanoes. Geo-Mar.

Lett. 23, 239–249.

Bottomley D. J., Katz A., Chan L. H., Starinsky A., Douglas M.,
Clark I. D. and Raven K. G. (1999) The origin and evolution of
Canadian Shield brines: evaporation or freezing of seawater?
New lithium isotope and geochemical evidence from the Slave
craton. Chem. Geol. 155, 295–320.

Boudreau B. P. (1996) The diffusive tortuosity of fine-grained
unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–

3142.

Boudreau B. P. (1997) Diagenetic Models and their Implementation.
Springer-Verlag, Berlin.

Butterfield, D.A., McDuff, R.E., Franklin, J. and Wheat, C.G.
(1994) Geochemistry of hydrothermal vent fluids from Middle
Valley Juan de Fuca Ridge. In Proc. Oc. Drill. Prog. Sci. Res.,
vol. 139 (eds. J. Mottl, E.E. Davis, A.T. Fisher and J.F. Slack).
Ocean Drilling Program, College Station, TX, pp. 395–410.

Castrec M., Dia A. N. and Boulègue J. (1996) Major- and trace-
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