1,307 research outputs found

    Iron bioavailability in two commercial cultivars of wheat: a comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells

    Get PDF
    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants

    Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data.

    Get PDF
    IntroductionDeficits in visual perception are well-established in schizophrenia and are linked to abnormal activity in the lateral occipital complex (LOC). Related deficits may exist in bipolar disorder. LOC contains neurons tuned to object features. It is unknown whether neural tuning in LOC or other visual areas is abnormal in patients, contributing to abnormal perception during visual tasks. This study used multivariate pattern analysis (MVPA) to investigate perceptual tuning for objects in schizophrenia and bipolar disorder.MethodsFifty schizophrenia participants, 51 bipolar disorder participants, and 47 matched healthy controls completed five functional magnetic resonance imaging (fMRI) runs of a perceptual task in which they viewed pictures of four different objects and an outdoor scene. We performed classification analyses designed to assess the distinctiveness of activity corresponding to perception of each stimulus in LOC (a functionally localized region of interest). We also performed similar classification analyses throughout the brain using a searchlight technique. We compared classification accuracy and patterns of classification errors across groups.ResultsStimulus classification accuracy was significantly above chance in all groups in LOC and throughout visual cortex. Classification errors were mostly within-category confusions (e.g., misclassifying one chair as another chair). There were no group differences in classification accuracy or patterns of confusion.ConclusionsThe results show for the first time MVPA can be used successfully to classify individual perceptual stimuli in schizophrenia and bipolar disorder. However, the results do not provide evidence of abnormal neural tuning in schizophrenia and bipolar disorder

    Exploration of geochemical data with compositional canonical biplots

    Get PDF
    The study of the relationships between two compositions is of paramount importance in geochemical data analysis. This paper develops a compositional version of canonical correlation analysis, called CoDA-CCO, for this purpose. We consider two approaches, using the centred log-ratio transformation and the calculation of all possible pairwise log-ratios within sets. The relationships between both approaches are pointed out, and their merits are discussed. The related covariance matrices are structurally singular, and this is efficiently dealt with by using generalized inverses. We develop compositional canonical biplots and detail their properties. The canonical biplots are shown to be powerful tools for discovering the most salient relationships between two compositions. Some guidelines for compositional canonical biplots construction are discussed. A geochemical data set with X-ray fluorescence spectrometry measurements on major oxides and trace elements of European floodplains is used to illustrate the proposed method. The relationships between an analysis based on centred log-ratios and on isometric log-ratios are also shown.Peer ReviewedPostprint (author's final draft

    Genetic Contributions to the Midsagittal Area of the Corpus Callosum

    Get PDF
    The degree to which genes and environment determine variations in brain structure and function is fundamentally important to understanding normal and disease-related patterns of neural organization and activity. We studied genetic contributions to the midsagittal area of the corpus callosum (CC) in pedigreed baboons (68 males, 112 females) to replicate findings of high genetic contribution to that area of the CC reported in humans, and to determine if the heritability of the CC midsagittal area in adults was modulated by fetal development rate. Measurements of callosal area were obtained from high-resolution MRI scans. Heritability was estimated from pedigree-based maximum likelihood estimation of genetic and non-genetic variance components as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Our analyses revealed significant heritability for the total area of the CC and all of its subdivisions, with h2 = .46 for the total CC, and h 2 = .54, .37, .62, .56, and .29 for genu, anterior midbody, medial midbody, posterior midbody and splenium, respectively. Genetic correlation analysis demonstrated that the individual subdivisions shared between 41% and 98% of genetic variability. Combined with previous research reporting high heritability of other brain structures in baboons, these results reveal a consistent pattern of high heritability for brain morphometric measures in baboons

    THE MANTECA YELLOW BEAN: A GENETIC RESOURCE OF FAST COOKING AND HIGH IRON BIOAVAILABILITY PHENOTYPES FOR THE NEXT GENERATION OF DRY BEANS (\u3ci\u3ePhaseolus vulgaris\u3c/i\u3e L.)

    Get PDF
    Dry beans (Phaseolus vulgaris L.) are a nutrient dense food produced globally as a major pulse crop for direct human consumption. Despite being rich in protein and micronutrients, long cooking times limit the use of dry beans worldwide, especially in regions relying on wood and charcoal as the primary sources of fuel for cooking, such as Sub-Sahara Africa and the Caribbean. Coincidently, these same regions also have high densities of women and children at risk for micronutrient deficiencies [1]. There is need for a fast cooking bean, which can positively impact consumers by reducing fuel cost and preparation time, while simultaneously complementing the nutritional quality of house-hold based meals [2]. To help accelerate a reliable increase in dry bean production for Sub-Saharan Africa, the Andean Bean Diversity Panel (ADP; http://arsftfbean.uprm.edu/bean/) was assembled as a genetic resource in the development of fast cooking, nutritional improved, biotic/abiotic resistant varieties. A germplasm screening for atmospheric cooking time (100oC) of over 200 bean accessions from the ADP identified only five fast cooking entries [3]. Two entries were white beans from Burundi (Blanco Fanesquero) and Ecuador (PI527521). Native to Chile, two of the six fast cooking entries were collected from Angola, and had a pale lemon ‘Manteca’ yellow seed color (Cebo, Mantega Blanca). Traditional knowledge from Chile suggests Manteca yellow beans are low flatulence and easy to digest [4]. Yellow beans of various shades are important in Eastern and Southern Africa. Their popularity has increased in recent years and they often fetch the highest prices at the marketplace. There is evidence to suggest that Manteca yellow beans have a unique nutritional profile when compared to other yellow seed types; with more soluble dietary fiber, less indigestible protein and starch, and are also free of condensed tannins. The hypothesis was tested that this unique composition would also have a positive influence on the bioavailability of iron in an in vitro digestion/Caco-2 cell culture bioassay

    Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil

    Get PDF
    Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition

    Design of interactive visualization of models and students data

    Full text link
    This document reports the design of the interactive visualizations of open student models that will be performed in GRAPPLE. The visualizations will be based on data stored in the domain model and student model, and aim at supporting learners to be more engaged in the learning process, and instructors in assisting the learners

    Developing more environmentally friendly and nutritious pea varieties

    Get PDF
    Non-Peer ReviewedPhytate is the major storage form of phosphorus in crop seeds, but is not well digested by humans and non-ruminant animals. In addition, phytate chelates several essential micronutrients which are also excreted contributing to phosphorus pollution in the environment. Environmental and nutritional concerns led to the development of cultivars with the low phytate trait. The present study is aimed at biochemical and molecular characterization of two low phytate pea mutant lines, 1-150-81 and 1-2347-144 developed at the Crop Development Centre, University of Saskatchewan in collaboration with Dr. Victor Raboy, USDA, Idaho. Biochemical characterization is in progress for the two low phytate lines, their progenitor, CDC Bronco and CDC Meadow that were grown in replicated field trials at Saskatoon and Rosthern, SK in 2010 and 2011. Samples of developing seeds were collected 7 days after pollination and at weekly intervals thereafter until maturity. The concentration of phytate-phosphorus, isomeric forms of phytatephosphorus and inorganic phosphorus in these developing cotyledons and seed coats will be assessed using colorimetric and HPLC methods. In this way, the pattern of phytate-phosphorus and inorganic phosphorus accumulation will be determined in developing seeds. Molecular characterization will include cloning, sequencing and mapping of the gene(s) associated with the low phytate trait. Molecular markers will be developed based on the gene sequences. Recombinant inbred lines (RILs) were developed from crosses between the two low phytate lines and CDC Meadow. One set of RILs was evaluated in a field trial in Saskatchewan in 2011, and will be evaluated again in 2012. The RILs will be genotyped using available microsatellite markers or SNP markers and phenotyped using colorimetric and HPLC assays. These data will then be used to identify the molecular marker(s) for the trait. The study will aid us to understand the nature of the low phytate mutation(s). Significant potential benefits that we could expect out of the project include improved bioavailability of phosphorus, iron and zinc in foods and feeds, less phosphorus excretion and environmental pollution and a substantial saving in feed costs
    corecore