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Genetic Contributions to the Midsagittal Area
of the Corpus Callosum
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The degree to which genes and environment determine variations in brain structure and function is fun-
damentally important to understanding normal and disease-related patterns of neural organization and
activity. We studied genetic contributions to the midsagittal area of the corpus callosum (CC) in pedigreed
baboons (68 males, 112 females) to replicate findings of high genetic contribution to that area of the CC
reported in humans, and to determine if the heritability of the CC midsagittal area in adults was modulated
by fetal development rate. Measurements of callosal area were obtained from high-resolution MRI scans.
Heritability was estimated from pedigree-based maximum likelihood estimation of genetic and non-genetic
variance components as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Our
analyses revealed significant heritability for the total area of the CC and all of its subdivisions, with h2 = .46
for the total CC, and h2 = .54, .37, .62, .56, and .29 for genu, anterior midbody, medial midbody, posterior
midbody and splenium, respectively. Genetic correlation analysis demonstrated that the individual subdivi-
sions shared between 41% and 98% of genetic variability. Combined with previous research reporting high
heritability of other brain structures in baboons, these results reveal a consistent pattern of high heritability
for brain morphometric measures in baboons.

� Keywords: corpus callosum, heritability, baboons, genetics, imaging

Genetic differences account for a significant proportion of
neuroanatomic variability in humans (Hulshoff Pol et al.,
2006; Pennington et al., 2000; Pfefferbaum et al., 2000).
While several studies have considered heritable influences
on total brain volume (Cheverud et al., 1990; Posthuma
et al., 2002; Rogers et al., 2007; Rogers et al., 2010; Thomp-
son et al., 2001; Toga & Thompson, 2005), little is known
about genetic influences on regional structures such as the
corpus callosum (CC). The CC is the largest commissural
white-matter (WM) tract in the brain, and is essential
for inter-hemispheric integration of sensory, motor, and
higher-order cognitive information. Numerous genetic dis-
orders affect the morphology of the CC, producing specific
regional abnormalities (Di Rocco et al., 2004; Kochunov
et al., 2005). Disruptions in the structural integrity of the
CC during aging, or as a result of specific disorders, are as-
sociated with impairments in problem-solving and work-
ing memory (Zahr et al., 2009), bimanual movement, or

inter-hemispheric transfer (Bonzano et al., 2008). Neu-
ropsychiatric conditions, including schizophrenia (Wang
et al., 2011) and major depression (Korgaonkar et al., 2011),
are associated with changes in the CC. Given the importance
of the CC to various cognitive functions, understanding the
genetic mechanisms that influence variation in the size and
shape of this structure will likely have important clinical
implications.

Using MRI, human twin studies have suggested a high
heritability of the midsagittal CC area (Scamvougeras et al.,
2003). Analyses in a small number of mono- (N = 10) and
dizygotic (N = 7) twin pairs estimated heritability at 94.4%
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for the size of the CC. Pfefferbaum et al. (2000) reported
similarly high heritability (85%) for the CC size in another
small (N = 85) twin sample. More recent investigations
into the regional heritability of the CC partitions using dif-
fusion tensor imaging (DTI) have reported that the degree
of contributions by genetic factors was variable among mid-
sagittal CC sections, and the sources of this variability re-
mained unknown (Brouwer et al., 2010; Chiang et al., 2011;
Kochunov et al., 2010c). Some developmental biologists
have suggested that the rate of development may modulate
the degree of genetic contribution, and earlier developing
structures will be more tightly controlled by genetic fac-
tors during development, thus leading to higher heritabil-
ity. However, this assertion is not consistent with results
that demonstrate that the earliest developing structures are
clearly evolvable through the course of the evolutionary
history, and may be susceptible to environmental perturba-
tions (Raff, 1996). This was further demonstrated by recent
studies that showed that the heritability of WM increases
with age (Peper et al., 2007), and the brain regions asso-
ciated with more complex reasoning become increasingly
more heritable with development (Lenroot & Giedd, 2008).

Comparative studies of animal models can provide
unique insights into the biological processes that under-
lie human neurobiology and neurodevelopment. Previous
studies of baboons have documented significant genetic ef-
fects on brain structure (Kochunov et al., 2010b; Rogers
et al., 2007), and shown that there are unanticipated paral-
lels in the architecture of genetic effects on cortical folding
and brain volume in humans and baboons (Rogers et al.,
2010). In this latter paper, we showed that an inverse rela-
tionship between genetic effects on brain size and cortical
folding is conserved in humans and baboons. Thus, the
baboon results provide both a confirmation of an unex-
pected finding in human neurogenetics and demonstrate
that there are long-term evolutionary genetic relationships
that are shared across primate clades. Significant results con-
cerning brain structure and the genetics of brain evolution
have also come from studies of macaques, vervet monkeys,
and chimpanzees (e.g., Fears et al., 2009; Lyn et al., 2011;
Semendeferi et al., 2002; Sherwood et al., 2010). In addi-
tion to comparative analyses of nonhuman primate and
human brain structure, researchers have also successfully
used nonhuman primates to study genetic influences on
brain function and metabolism (Oler et al., 2010). Between-
species differences in gene expression within the brain have
also informed our understanding of human brain function
(Konopka et al., 2009).

We aimed to evaluate genetic influences on inter-subject
variability in midsagittal CC size, and the degree to which
the genetic heritability of regional CC variability was modu-
lated by rate of development during fetal and early postnatal
growth. The evaluation was performed in a nonhuman pri-
mate: baboons, Papio hamadryas. Papio baboons were cho-
sen because they share several neurological characteristics

with humans, including high heritability of brain volume,
cortical surface area, and cortical gyrification (Kochunov
et al., 2010b). Additionally, age-related changes in the de-
velopment of the CC are consistent with the developmental
course observed in humans (Phillips & Kochunov, 2011).
Therefore, the baboon holds great potential as a model for
human brain development.

Methods
Subjects

One hundred-eighty adult baboons (Papio hamadryas) (68
males, 112 females) were selected from the large multi-
generation pedigreed colony of more than 2000 baboons
maintained by the Southwest National Primate Research
Center (SNPRC) at the Texas Biomedical Research Institute
in San Antonio, Texas. The average age of the study animals
was 16 years (SD = 4.2, age range: 7–28 years). This age
range was chosen to minimize the effects of development
or senescence based on studies of cerebral ontogeny (Leigh,
2004; Leigh et al., 2003). The genealogical relationships
among study animals included 414 parent–offspring pairs,
51 full sib pairs, 645 half-sib pairs, and a large number of
more distant kinship relationships. Captive male baboons
are sexually mature at 5 years and fully adult at 6 years. Fe-
male baboons start to cycle at between 3–4 years and are
fully grown around 5 years.

We measured the CC in utero and during the early post-
natal period to estimate developmental rate. In-utero imag-
ing of 13 normally developing fetuses was performed cov-
ering the period of gestational week 17 through birth (ges-
tational week 28); postnatal imaging was performed on 16
baboons between postnatal weeks 1 and 32. The details for
the in-utero and early postnatal imaging and animal han-
dling protocols are described elsewhere (Kochunov et al.,
2010a; Kochunov & Duff Davis, 2009; Phillips & Kochunov,
2011).

Animal Handling and MR Imaging

Animals were transported from the SNPRC to the Re-
search Imaging Institute, University of Texas Health Sci-
ences Center at San Antonio for imaging. Handling and
anesthesia procedures followed procedures described pre-
viously (Kochunov & Duff Davis, 2009; Rogers et al.,
2007); they are briefly summarized here. Fifteen minutes
prior to scanning, animals were immobilized with ketamine
(10 mg/kg) and intubated with an MR-compatible endotra-
cheal tube. Anesthesia was maintained with 5% isoflurane
with an MR-compatible gas anesthesia machine. Animals
remained anesthetized throughout the imaging procedure;
respiration rate, heart rate, and oxygen consumption were
monitored continuously. This protocol and all animal pro-
cedures were reviewed and approved by the Institutional
Animal Care and Use Committee of the Texas Biomedical
Research Center.
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Heritability of the Corpus Callosum in Baboons

FIGURE 1

Structural image processing pipeline, which allows for a simple automation of sequential processing steps. Our pipeline consists of the
following steps: removal of non-brain tissue, correction for RF-inhomogeneity artifacts, global spatial normalization (A), hemispheric
segmentation (B), tissue classification (C), extraction of the inner/outer cortical surfaces (D, E), extraction of cortical sulci (F), automated
labeling of cortical sulci (G), and gyral segmentation (H).

The imaging protocols used to acquire images from
all subjects are detailed elsewhere (Kochunov & Duff
Davis, 2009; Rogers et al., 2007). In short, high-resolution
(isotropic 500 μm), T1-weighted images were acquired us-
ing a 3D IR-TurboFlash sequence optimized for anatomical
imaging of baboon brain. An adiabatic inversion recov-
ery (IR) contrast pulse with linear phase encoding schema
was employed, primarily because it led to a uniform tissue
contrast across the imaging volume (being less affected by
B1-inhomogeneity/radio-frequency [RF] penetration arti-
facts). The sequence control parameters for the adult and
postnatal subjects (FOV = 128 mm, TI = 795 ms, TE = 3.04,
TR1 = 5 ms, TR2 = 2000 ms, and flip angle = 10◦) were
modeled to produce gray matter–white matter (GM–WM)
contrast of 25% based on the analytical solutions to Bloch
equations (Deichmann et al., 2000), and average measured
values of T1, T2, and PD. The model-determined imag-
ing sequence parameters were verified in a group of five
animals, where group-average GM–WM contrast was cal-
culated to be 25.2 ± 2% (range 22–26%). Image acquisition
was performed using a retrospective motion-corrected pro-
tocol (Kochunov et al., 2006). Under this protocol, six full-
resolution segments, each 9 minutes long, were acquired for
a total sequence running time of∼54 minutes. The sequence
control parameters, TR/TE/flip angle/FOV/Spatial Resolu-
tion/Scan Time = 5 ms/2.5 ms/75 degrees/180 mm/500 mi-
crons isotropic/30 min, allow for rapid collection of 3D data
phase partition of 360 lines within a single respiration cy-
cle, as detailed in Phillips & Kochunov, 2011. This protocol
allowed for a high-SNR, 3D, and isotropic coverage of the
fetal brain, with good regional GM–WM tissue contrast.

Image Processing and Measurement of CC

The image processing pipeline consisted of the follow-
ing steps: removal of non-brain tissue, correction for spa-
tial variations in intensity due to scanner radio-frequency

inhomogeneity, and global spatial normalization to a
population-based template to reduce global variability in
brain size and orientation (Figure 1). The details of this
processing are described elsewhere (Rogers et al., 2007).
In short, the removal of non-brain tissue used both auto-
matic (Smith, 2002) and manual detailing methods. The
correction for RF-inhomogeneity was performed using the
functional magnetic resonance imaging of the brain (FM-
RIB) automated segmentation tool (Smith et al., 2004).
A nine-parameter global spatial normalization procedure
was used to reduce inter-subject variability in global brain
size, shape, and orientation, and was performed using the
FMRIB linear image registration tool (Smith et al., 2004).
A population-based, pseudo-Talairach, median-geometry
atlas served as the target brain for global spatial normal-
ization. This atlas was created using methods previously
described for humans (Kochunov et al., 2002) and primates
(Kochunov & Duff Davis, 2009).

Measurements of CC area were then performed from
the midsagittal section, where the CC can be readily iden-
tified, using methodology originally described by Biegon
and colleagues (Biegon et al., 1994), and later adapted to
nonhuman primates (Sanchez et al., 1998). In the original
procedure, the anterior 20% of the CC was defined as the
genu, the posterior 20% defined as the splenium, and the
middle 60% defined as the body. In adapting this to nonhu-
man primates, Sanchez et al. (1998), Phillips et al. (2007),
and Pierre et al. (2008), further delineated the body into
three equal regions: anterior midbody, medial midbody,
and caudal midbody. These subdivisions of the CC are be-
lieved to correspond to functional connectivity with cortical
areas (Aboitiz et al., 1992; Alexander et al., 2007; Hofer &
Frahm, 2006). The anterior region of the genu and anterior
midbody connects higher-association areas of the frontal
lobe; the medial and caudal midbody connect primarily
sensorimotor regions; the posterior region of the splenium
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FIGURE 2

Anatomical subdivision of the baboon corpus callosum from MRI sagittal view. The total midsagittal area was divided into five equally
spaced subdivisions. 1 = genu; 2 = anterior midbody; 3 = medial midbody; 4 = caudal midbody; 5 = splenium.

integrates visuospatial regions of the cortex. Analyze 10.0
(Mayo Foundation for Medical Education and Research)
was used to divide and measure the midsagittal area of the
CC in mm2. To subdivide the CC, the entire length of the
CC was first manually traced, then divided into five equally
spaced sections (see Figure 2). Two individuals (KAP and
EAB) performed measurements of the CC; there was a high
degree of concordance in measures, r = .88. Details on the
measurements of total CC area and CC subdivision area
were provided in Phillips and Kochunov (2011). Regional
development rates were estimated by fitting a linear regres-
sion to the dataset consisting of both in-utero and postnatal
data points. In this way we estimated mm2/week of devel-
opment in callosal subdivisions.

Quantitative Genetic Analysis

Variance components methods, as implemented in the SO-
LAR software package (http://solar.sfbrgenetics.org) (Al-
masy & Blangero, 1998), were used to estimate the heritabil-

ity of measured traits. The algorithms in SOLAR employ
maximum likelihood variance decomposition methods and
are an extension of the strategy developed by Amos (1994).
The covariance matrix � for a pedigree of individuals is
given by Equation 1:

� = 2Fs2
g + Is2

e (1)

where s2
g is the genetic variance due to the additive genetic

factors, F is the kinship matrix representing the pair-wise
kinship coefficients among all animals, s2

e is the variance
due to individual–specific environmental effects, and I is
an identity matrix. The kinship matrix F was calculated
based on the known breeding records and was verified by
genetic microsatellite-marker-based testing that confirmed
parent–offspring relationships among baboons. This pro-
duces a multigenerational pedigree that summarizes the
genetic relationships among all individuals. For additional
explanation of the variance components approach in this
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Heritability of the Corpus Callosum in Baboons

TABLE 1

Mean Area, Rates of Development, Heritability, and Proportion of the Total Variance Explained by Covariates for the Corpus Callosum
and Regional Subdivisions in Adult Baboons

CC region Mean area (mm2) SD
Rates of developmenta

(mm2/week) h2 SD p
Significant
covariates

Percentage variance
explained by covariance

Total CC 143.07 22.11 .46 .16 .00005 None .5
Genu 34.43 5.57 .37 .54 .18 8.6·10−6 None .2
Anterior midbody 22.74 4.38 .33 .37 .17 .0006 None .3
Medial midbody 24.31 4.71 .31 .62 .17 2.1·10−6 None .2
Caudal midbody 26.68 5.84 .34 .56 .19 .0001 None 1.3
Splenium 34.94 5.98 .51 .29 .14 .0007 None .1

Note: CC = corpus callosum, SD = standard deviation.
a Data from Phillips and Kochunov (2011).

TABLE 2

Genetic Correlations Between the Subdivisions of the Corpus Callosum

ρP; ρG; ρE (p) Genu Anterior midbody Medial midbody Caudal midbody Splenium

Genu 1 .75; .97; .62 (p = 10−34;
10−3; .01)

.57; .57; .59 (p = 10−13;
.01; .04)

.59; .57; .59 (p = 10−14;
10−3; .15)

.55; .41; .72 (p = 10−12;
.10; 10−3)

Anterior midbody 1 .65; .63; .72 (p = 10−18;
.02; .01)

.75; .97; .62 (p = 10−34;
10−3; .01)

.58; .81; .52 (p = 10−15;
.09; .01)

Medial midbody 1 .78; .98; .48 (p = 10−38;
10−6; .14)

.54; .96; .46 (p = 10−15;
.01; .03)

Caudal midbody 1 .60; .98; .50 (p = 10−19;
.01; .02)

Splenium 1

Note: The overall phenotypic correlation (ρP) between two traits is expressed using the correlation due to shared additive genetic effects (ρG) and the residual
correlation (ρE) due to shared environmental effects.

context, see Almasy & Blangero (1998) and Blangero et al.
(2001).

Heritability (h2), the portion of phenotypic variance
(sp

2) that is accounted for by additive genetic variance
(Eq. 1), is assessed by contrasting the observed phenotypic
covariance matrix with the covariance matrix predicted by
kinship. Significance of heritability is tested by comparing
the likelihood of the model in which s2

g is constrained to
zero with that of a model in which s2

g is estimated. Twice the
difference between the two log likelihoods of these models
yields a test statistic which is asymptotically distributed as
a 1/2:1/2 mixture of a χ1

2 variable and a point mass at zero.
During testing for the significance of heritability, the phe-
notype values for each individual are adjusted for a series
of covariates. In our analysis we used a polygenic model
that estimated the influence of specific variables (additive
genetic variation and covariates including sex, age, age2,
age x sex interaction, age2 x sex interaction, and random
unidentified environmental effects), calculating heritability
and its significance (p value) for each trait’s variance within
this population. The level of significance for the heritability
analysis for callosal subdivisions was set at p ≤ .01 (Bonfer-
roni correction) to reduce the probability of Type 1 errors
associated with multiple (N = 5) measurements.

Genetic Correlation Analyses

Bivariate genetic correlation analyses were performed to
study the proportion of shared genetic variance between
the subdivisions of the CC using methods implemented

in the SOLAR software package. Bivariate genetic analysis
calculates the magnitude and significance of genetic corre-
lation coefficient (ρG), which is the proportion of variability
due to shared genetic effects. The overall phenotypic cor-
relation (ρP) between two traits A and B (Equation 2) can
be expressed using the correlation due to shared additive
genetic effects (ρG), and the residual correlation (ρE) due
to shared environmental effects.

ρP =
√

h2
A

√
h2

B · ρG +
√

1 − h2
A

√
1 − h2

B · ρE (2)

where h2
A and h2

B denote the additive genetic heritabilities
for each of the traits, that is, the proportion of the total
phenotypic variance that is explained by additive genetic
factors. If the genetic correlation coefficient (ρG) is signif-
icantly different from zero, then the traits are considered
to be partially influenced by shared genetic factors (Almasy
et al., 1997).

Results
The mean area for callosal subdivisions in adult baboons
is shown in Table 1. Quantitative genetic analyses revealed
that the total area of the CC and all subdivisions is heri-
table, with h2 at .46 (SD = .16) for the total CC, ranging
from .29 (SD = .14) for the splenium to .62 (SD = .17)
for the medial midbody (Table 1). Bivariate genetic correla-
tion analysis demonstrated that the individual subdivisions
shared between 41% and 98% of genetic variability (Ta-
ble 2). There were no significant covariates for any of the
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phenotypes, which was likely a result of using global spatial
normalization to correct for differences in head size.

To test if the rate of cerebral development was predic-
tive of the level of heritability in adulthood, we plotted the
degree of genetic contribution to regional variability (i.e.,
heritability in size) in the CC subdivisions versus the re-
gional development rates during the fetal and early postna-
tal period. These rates were determined from brain images
of 29 normally developing fetuses, covering the period of
gestational week 17 through birth (gestational week 28).
Imaging was also performed on 16 baboons up to postnatal
week 32. The regional estimates of heritability were nega-
tively correlated with the rates of change in midsagittal CC
area during this developmental period (r = .74, p = .08)
(Table 1).

Discussion
Our study demonstrated significant heritability for the size
of the CC and its subdivisions in adult baboons. To our
knowledge, this is the first investigation of heritability of the
CC subdivisions performed in a pedigree of nonhuman pri-
mates. Heritability of individual callosal subdivisions varied
from .29 (SD = .14) for the splenium to .62 (SD = .17) for
the medial midbody, suggesting callosal subdivisions may
differ in the degree of genetic contribution to the individual
variation, but the large standard errors we obtained sug-
gest that in this dataset the heritabilities are not statistically
different. Overall, the estimates of heritability in baboons
were about half of those reported in humans (Pfefferbaum
et al., 2000; Scamvougeras et al., 2003). This discrepancy
can potentially be explained by the methodological differ-
ences, since the human studies did not correct for inter-
subject differences in brain volume. The total brain volume
is highly heritable in both humans and baboons (Rogers
et al., 2007; Rogers et al., 2010), and this study aimed to
measure genetic contribution of the morphology of CC in-
dependent of brain size. The global differences in brain size
and shape can be corrected by spatial normalization, which
transforms brains into a standard reference frame using a
nine-parameter (three translations, rotations, and scaling)
spatial transformation where they are adjusted to the same
external dimensions (Rogers et al., 2007). This normaliza-
tion step was also shown to remove the effects of body weight
and sex (Kochunov et al., 2009; Rogers et al., 2007). After
spatial normalization, variability in brain structure chiefly
reflects individual variability in the structure’s shape, such
as curvature, length, and width. Additionally, the investi-
gations of CC heritability in humans were performed on a
small number of twin pairs and used a simplified estimate of
heritability that did not model the shared environmental ef-
fects, which are known for overestimation of the heritability
values (Keller et al., 2010).

As brain regions associated with more complex reason-
ing were reported to become increasingly heritable with

maturation (Lenroot & Giedd, 2008), we expected higher
heritability in subdivisions of the CC connecting higher-
association areas. The subdivisions of the CC are associated
with functional connectivity to cortical regions (Alexander
et al., 2007; Hofer & Frahm, 2006). The anterior regions of
the genu and anterior midbody connect primarily higher-
order cognitive regions; the medial and caudal midbody
connect primarily sensorimotor regions; the posterior re-
gion of the splenium integrates visuospatial regions of the
cortex. Thus, as the genu and splenium are involved in
higher-association cognitive tasks, we expected these sub-
divisions to have the greatest heritability in adult baboons.
When considering heritability of the CC in adults, the genu
and splenium did not display the highest heritability rates.
The value for the genu, which connects prefrontal regions,
is higher than the average across regions, and higher than
the value for the total CC, but the value of heritability for the
splenium is lower than all other values. As the splenium is
involved in visuospatial integration, perhaps experiences in
coordination of visual and motor activities are important
factors in influencing the variability in size of the sple-
nium. When looking at heritability rates across fetal and
early postnatal development, a similar pattern is seen. The
splenium showed the largest degree of variation due to en-
vironmental effects. The results of the genetic correlation
analyses revealed that the degree of shared genetic contri-
bution among CC subdivisions is complex, and suggested
that subdivisions may differ in the degree of genetic contri-
bution. Heritability among subdivisions did not vary along
the anterior–posterior direction, but spatially adjacent sub-
divisions shared more genetic variability than more distal
regions.

The second aim in this study was to investigate whether
genetic contributions to inter-subject variability were mod-
ulated by the rate of development. Previously we calculated
the regional rates of increase in midsagittal CC areas from
fetal and early postnatal baboons (Phillips & Kochunov,
2011). Our findings of negative correlation between re-
gional heritability values and the rate of development may
suggest that the genetic contributions to regional CC size are
negatively correlated with rate of development. Cheverud
and colleagues (1990) drew a connection between develop-
mental factors, such as prenatal neurohormonal environ-
ment, and the genetic versus environmental contributions
to variability in the length of cortical sulci. They found
lower heritability estimates for the length of the primary
sulci that appear later in cerebral development (Cheverud
et al., 1990). This implied that lower heritability for later-
appearing sulci may be due to higher contributions of en-
vironmental factors to overall phenotypic variance. They
suggested that higher environmental contribution to sulcal
morphology could be due to changes in prenatal hormone-
mediated neurohumoral environment and tissue receptiv-
ity, which become progressively more variable during de-
velopment (Cheverud et al., 1990). A trend toward higher
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heritability values for primary cortical structures appearing
earlier in development was also reported in humans (Brun
et al., 2008; Chiang et al., 2008; Le Goualher et al., 2000;
Lohmann et al., 2008; Lohmann et al., 1999). Our result is
supportive of this hypothesis; however, the negative rela-
tionship between heritability and the rate of development
is driven primarily by the splenium, which had the high-
est rate of development and the lowest heritability estimate
among the CC regions. The value of the correlation coeffi-
cient is greatly diminished if splenium is removed from the
analysis (r = −.11 vs. −.74, respectively).

Understanding how genes and environmental variation
determine brain structure and function is fundamentally
important to understanding normal and disease-related
patterns of neural structure and function. Significant ge-
netic effects have been reported for other brain structures
in baboons, including total brain volume and shape, and
regions of motor cortex and the superior temporal gyrus
(Rogers et al., 2007). Thus, a consistent pattern of high
heritability for brain morphometric measures is seen in
baboons. The results of the present study further indicate
that Papio baboons are a valuable model for translational
neurologic genetic research.
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