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Cognitive deficits are core to the disability associated with many psychiatric disorders. Both variation in cognition

and psychiatric risk show substantial heritability, with overlapping genetic variants contributing to both.

Unsurprisingly, therefore, these fields have been mutually beneficial : just as cognitive studies of psychiatric risk

variants may identify genes involved in cognition, so too can genome-wide studies based on cognitive phenotypes

lead to genes relevant to psychiatric aetiology. The purpose of this review is to consider the main issues involved in

the phenotypic characterization of cognition, and to describe the challenges associated with the transition to genome-

wide approaches. We conclude by describing the approaches currently being taken by the international consortia

involving many investigators in the field internationally (e.g. Cognitive Genomics Consortium; COGENT) to

overcome these challenges.
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Introduction

Progress in understanding the genetic architecture of

cognition has derived in no small part from the use of

cognition as an intermediate phenotype for psychi-

atric illness. Research groups working in the areas of

Alzheimer’s disease, schizophrenia, autism, attention

deficit hyperactivity disorder (ADHD), intellectual

disability and other childhood neurodevelopmental

disorders have amassed considerable experience

in characterizing the effects of ‘candidate ’ neuro-

psychiatric risk genes at the level of cognition. Interest

in cognitive deficits in neuropsychiatric genetic stu-

dies has been fuelled by evidence that these deficits

are predictive of psychiatric morbidity (Green et al.

2004), more stable (trait-like), and more easily quanti-

fiable than behaviourally defined clinical symptoms

(Erlenmeyer-Kimling et al. 2000). Recently, this work

has resulted in large-scale collaborations to achieve the

sample sizes required for adequately powered gen-

ome-wide studies of cognition. The challenges for this

work are considerable, requiring careful calibration

not just of genetic platforms and analysis, but also of

cognitive phenotypes across samples. Here we review

the main issues involved in combining large datasets

that quantify cognitive performance using overlap-

ping but non-identical metrics.

In outlining the considerations for characterizing

cognition for the purposes of genetic studies, four

methodological issues appear to us to be particularly

noteworthy. The first is regarding how best to model

the relationship between different aspects of cognition.

The second is to determine criteria for selecting indi-

vidual aspects of cognition to focus on. The third

concerns the type of analysis undertaken, whether

univariate or multivariate. A fourth consideration is

the relative sensitivity of behavioural versus imaging-

based measures of cognition; this issued has been

reviewed extensively elsewhere and will not be ad-

dressed here (Rose & Donohoe, 2012). We conclude by

considering the main concerns involved in studies of

‘neurocognitive phenomics ’ – genome-wide studies

to understand variation in cognition – the studies

published to date, and the approach adopted by

the Cognitive Genomics Consortium (COGENT) in

addressing these issues.

The hierarchy of cognitive functions

Why are some people better than others at perform-

ing particular cognitive tasks, such as arithmetical
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operations? Several possibilities present themselves to

us. It might be that some people are just better than

others generally in doing cognitive tasks. It might be

that some people are better than others at mental work

that involves numbers and their manipulation and

also other related tasks. It might be that some people

are just better than others at doing a particular arith-

metical task. Of course, there could be other factors

that operate on a particular occasion to produce a

good, medium or bad score. The answer is that all of

these suggestions are correct : there are demonstrable

differences between people in overall cognitive ability,

in separable domains of cognitive ability, and in spe-

cific cognitive tasks. There are also occasion-specific

factors affecting mental performance and error of

measurement.

When we try to model variance in cognitive tasks –

including genetic contributions to the variance – we

need to consider the fact that human cognitive vari-

ance occurs at these different levels in a hierarchy. At

the highest level of the hierarchy, which covers the

most general cognitive variation, is what is known as

general cognitive ability. It is also sometimes known as

general intelligence or just ‘g ’. This was discovered by

Spearman (1904) using data from English school-

children. Spearman found that there was a tendency

for all cognitive tasks to show positive correlations. He

hypothesized that people were better at some tasks

than others because they were more or less endowed

with general cognitive ability and also specific abilities

for each particular task. It was realized that this ex-

planation, although accurate, was insufficient. That is

because it was empirically demonstrated that some

types of tasks correlate more strongly within a par-

ticular type of cognitive domain (e.g. spatial or verbal)

than with tasks outside of that domain. Therefore, an

accommodation was made such that variation in cog-

nitive performance was describable at three levels : at

general cognitive ability, at the level of broad cognitive

domains, and at the level of specific skills. Probably

the first person to describe this hierarchy clearly was

Vernon (1940).

The best evidence for the hierarchy of cognitive

function variation came from Carroll (1993). In this

book, he carried out a massive empirical task by re-

analysing over 400 datasets from many laboratories

that contained a range of mental tasks applied to large

samples. These had been gathered over much of the

20th century. Carroll found that all of these datasets

conformed to a correlational structure that was best

described in a three-level hierarchy. That is, he con-

firmed Vernon’s suggestion that, to understand the

correlations among mental tests, people’s performance

(variance) was best described as a three-level hier-

archy with general cognitive ability at the peak, major

cognitive domains at the next level, and specific cog-

nitive abilities at the bottom. The g factor at the peak of

the hierarchy tended to account for between 40% and

50% of the total variance in mental test performance.

The three-level hierarchy has further implications. It

is important to appreciate that the cognitive domains

at the second level are very highly loaded on g (Deary

et al. 2000, 2010 ; Deary, 2001a–c). That is, they are not

independent and they derive much of the variation

from g. Thus, the reason that people are good at do-

mains like verbal, spatial, reasoning, speed and other

cognitive domains is that they are high on g and also

that they have some more specific capability asso-

ciated with that domain. One should not make the

mistake of thinking that ability on a given domain is

independent of g. This also applies to the specific skills

too : being good at a very specific mental ability is

partly to do with that specific skill, partly to do with

the domain with which it is associated, and also partly

to do with general cognitive ability.

The general cognitive ability factor has several ad-

vantages for genetic studies. It has high stability of

individual differences across most of the human life

course (Deary et al. 2000). The general factor from dif-

ferent cognitive test batteries ranks people almost

identically (Johnson et al. 2004). The general factor

from a number of cognitive tests can be extracted and

used as a score to indicate people’s level of general

cognitive ability. This can be done using various

multivariate statistical methods, such as principal

components analysis (PCA), and exploratory and

confirmatory factor analysis. Of course, there arises

the question of whether people would be ranked the

same or differently when the g factor was based on

different cognitive test batteries. This has been stud-

ied, and the result is that, when large samples of

people have been tested on different cognitive test

batteries, the general cognitive factor (g) derived from

them correlates very highly, often near to 1; that is,

g factors derived from different groups of tests rank

people almost identically (Johnson et al. 2004, 2008).

This is useful for genome-wide association studies of

general cognitive ability. It means that, although dif-

ferent studies have used different cognitive tests, if

each has used a sufficient number of sufficiently di-

verse cognitive tests, then the g derived from each of

them may be comparable, and used to indicate a

similar trait across studies in meta-analyses. The

structural and functional brain correlates of general

ability differences are also increasingly well under-

stood (Jung & Haier, 2007 ; Deary et al. 2010). While

there are genetic effects – as shown from behavioural

genetic studies – at the three levels (Rijsdijk et al. 2002;

Deary et al. 2009, 2010), much of the genetic influence

is on the general mental ability factor. The heritability
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of general cognitive ability is well established, with an

additive genetic contribution that rises from quite low

levels in early childhood to over 60% throughout

adulthood.

In addition to the three-level hierarchical model of

cognitive ability differences – with a general cognitive

factor at the apex – having much replication in

psychometric studies, it should also be addressed

whether there is validating biological evidence for

such a structure. This has been addressed by a number

of authors, and some key examples are given here.

These are examples where biological effects have been

examined with respect to the hierarchical model of

cognitive differences. In each case formal hypothesis

testing using structural equation modelling was used

to examine influences on g and the other cognitive

domains. Thus, for example, the major influence of age

is on the g level of the hierarchy with some additional

effects on memory and processing speed domains

(Salthouse, 2004). The well-established, modest

correlation between brain size – estimated in healthy

individuals using magnetic resonance brain scan-

ning – is largely captured by the association between

total brain volume and g (MacLullich et al. 2002). Other

g–brain associations are reviewed by Deary et al.

(2010). In addition, behavioural genetic studies show

that the principal genetic influence on cognitive func-

tions is an additive genetic influence on g, and that

genetic effects on more specific domains of cognitive

function largely derive from the genetic influences

on g (Deary et al. 2009).

In summary, the phenotype of cognitive abilities is

described by a three-level hierarchy that captures

variation in people’s mental functioning at different

levels of generality. This framework is a good starting

point for genetic studies, which may be aimed at dif-

ferent levels. The evidence to date shows that much of

the genetic influence is on general ability, and that like

human height will have a complex genetic architecture

(Lanktree et al. 2011). It makes sense therefore to target

this level of cognition with regard to molecular genetic

studies, including in current genome-wide association

study (GWAS) approaches described later in this

review.

Choosing between specific cognitive functions and

tasks in cognitive phenomic analysis

Several criteria have been put forward for choosing

appropriate cognitive measures as phenotypes rel-

evant to psychiatric studies (Cannon, 2005 ; Gur et al.

2007 ; Donohoe et al. 2009). The most obvious criterion,

perhaps, is whether and to what extent performance

on a given task is heritable. Different classes of

relatives share more or less genetic material (e.g.

monozygotic twins share 100% of genes, dizygotic

twins/siblings 50%, and half-siblings 25%), making it

possible to estimate the proportion of individual dif-

ferences in performance in a population at a given

time that are due to genetic differences [termed heri-

tability (h2)]. In considering heritability, the degree to

which performance on a particular function or task

shares genetic variance with the underlying risk of the

disease is also a significant consideration (Glahn et al.

2012). While availability of twin and population-based

disease registry data has confirmed the importance of

heritability for many psychiatric disorders, includ-

ing autism and the psychoses (Cardno et al. 1999 ;

McGuffin et al. 2003), unavailability of twin data for

many specific cognitive tests has meant that herita-

bility has been inferred from the familiality of specific

cognitive deficits in healthy relatives of patients.

Where twin data have been available (Goldberg et al.

1990, 1995 and Toulopoulou et al. 2007 for schizo-

phrenia ; Bidwell et al. 2007 for ADHD), evidence for

heritability of cognitive deficits has generally been

noted.

Shared genetic variation between cognitive and

illness phenotypes is a key concept of the ‘en-

dophenotype’ approach. As originally hypothesized,

endophenotypes – measurable components located

along the pathway between genotype and disease,

such as those derived from cognitive and neuro-

psychological measures – were suggested to be phe-

notypically and genetically simpler than the

more complex disease syndrome, hence leading to

more powerful – and successful – genetic analysis

(Gottesman & Gould, 2003). The use of cognitive

phenotypes as neuropsychiatric endophenotypes has

been reviewed extensively (Glahn et al. 2004 ; Goldberg

& Weinberger, 2004 ; Cannon, 2005 ; Meyer-Lindenber

& Weinberger, 2006 ; Gur et al. 2007 ; Walters & Owen,

2007; Donohoe et al. 2009 ; Corvin et al. 2012). Several

questions about the nature and use of cognitive en-

dophenotypes remain. For example, Gottesman’s

original hypothesis that cognitive phenotypes would

represent genetically ‘simpler ’ constructs than ge-

netically complex psychiatric conditions has not

generally been supported – cognitive constructs like

intelligence appear to be themselves, like other human

traits including height and weight, genetically com-

plex (Bilder et al. 2011). Furthermore, whether cogni-

tive functions are mediators or moderators of genetic

effects on illness remains unclear ; psychiatric GWAS

studies to date suggest that while the increased risk

associated with some common variants is also asso-

ciated with variation in cognitive function [e.g. cal-

cium channel, voltage-dependent, l type, alpha 1c

(CACNA1C) ; Zhang et al. 2012] as either a moderator/

mediator of genetic risk or as a pleiotropic effect, other
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common variants appear to affect risk largely inde-

pendently of cognition [e.g. neurogranin (NRGN) in

schizophrenia ; Donohoe et al. 2011]. Finally, although

high genetic overlap between cognitive deficits and

illness has been reported (e.g. overlapping genetic ef-

fects of about 92% between intelligence quotient and

schizophrenia ; Toulopoulou et al. 2007), population-

based studies suggest that the actual overlap may be

much smaller (Fowler et al. 2012). Whether because of

these factors, or for pragmatic reasons such as avail-

ability of much larger diagnostically phenotyped

samples than cognitively phenotyped samples, cogni-

tive phenotype studies in psychiatric illness have

more typically been used for following up psychiatric

GWAS signals than for discovery. Sometimes termed

‘a reverse endophenotyping’ strategy, the approach

here has been to use neuropsychological measures to

characterize the effects of already GWAS-identified

risk variants on cognition (for a recent review, see

Corvin et al. 2012).

Irrespective of whether cognitive phenotypes are

used for the purposes of genetic discovery or char-

acterization of already identified risk variants, a fur-

ther criterion for genetic studies of cognitive functions

and associated measures is that they can be quantitat-

ively measured in a reliable manner. That cognitive

phenotypes should have enhanced reliability as com-

pared with that afforded by diagnostic categories is an

important assumption of the intermediate phenotype

approach (Gottesman & Gould, 2003 ; Bearden &

Freimer, 2006). Thus, the inter-rater reliability (the

consistency of scores across raters) and test–retest re-

liability (the consistency of scores over time) of cogni-

tive phenotypes have been widely scrutinized. In

patient studies, the importance of state independence

(that scores are relatively independent of fluctuations

in clinical symptoms) and independence from medi-

cation effects has been a particular focus in this regard,

particularly for schizophrenia. These studies suggest

that while cognitive deficits are somewhat correlated

with clinical symptoms (for example, negative symp-

toms in schizophrenia), the correlation is low (r2<0.3)

and the amount of variance shared by these variables

appears to be small. In factor analysis, cognitive func-

tion (as measured in terms of memory and attention)

often emerges as a separate factor from clinical symp-

toms (Donohoe & Robertson, 2003 ; Good et al. 2004 ;

Donohoe et al. 2006 ; Lipkovich et al. 2009). Fur-

thermore, changes in cognition following trials of

either medication or cognitive remediation are only

weakly associated with changes in clinical presen-

tation (Davidson et al. 2009 ; Wykes et al. 2011). Finally,

data derived from large-scale studies of individuals at

risk for developing psychosis, either by virtue of

prodromal symptomatology (clinical high risk) or

genetic predisposition (genetic high risk), suggest that

neurocognitive impairment is present regardless of

current symptom status and likelihood of later con-

version to psychosis (Seidman et al. 2010). Taken to-

gether, these data indicate that cognitive phenotypes

are, in addition to being heritable, likely to be stable

and generally independent of fluctuations in clinical

symptomatology.

The utility of several cognitive functions as en-

dophenotypes have been extensively investigated, and

to a reasonable extent supported across illness, in-

cluding memory function (both episodic and working

memory), and various aspects of attentional control

and executive function. Evidence of the utility of these

individual cognitive phenotypes and measures in re-

lation to specific neuropsychiatric disorders has been

reviewed extensively, including Gur et al. (2007) and

Donohoe et al. (2009) for schizophrenia, Glahn et al.

(2004) for bipolar disorder, MacQueen & Frodl (2011)

for major depressive disorder, Bellgrove & Mattingly

(2008) for ADHD, and Abrahams & Geschwind (2010)

for autism. A particular challenge for utilizing these

cognitive constructs in GWAS studies, however, is re-

garding how best to combine test scores between da-

tasets. The requirement for adequately large samples

powered to undertake genome-wide analysis means

that data need to be combined across datasets, usually

from a large number of research groups. However,

because of differences between groups in the cognitive

measures employed, combining datasets is extremely

challenging. Even where similar cognitive and test

constructs have been employed between sites – e.g.

using the continuous performance test (CPT) to

measure attentional control – different versions of the

test (e.g. CPT-AX: Identical Pairs, CPT-IP; Degraded-

Stimulus, CPT-DS) usually result in non-identical

phenotypes between sites.

Univariate versus multivariate analysis

A third consideration for cognitive genetics ap-

proaches is whether to use a multivariate, rather than

univariate, approach. The power of a genetic analysis

(e.g. linkage or GWA) to detect an effect can be greatly

enhanced by collapsing large cognitive batteries into

cognitive domains that can be achieved via factor

analysis. The advantage of factor analysis is threefold:

(1) the maximum amount of cognitive information is

captured by relatively few constructs ; (2) reducing a

large number of variables to smaller number of latent

constructs limits the need for conservative multiple

comparison correction ; and (3) if employing con-

firmatory factor analysis measurement error can be

accounted for. A potential disadvantage of this ap-

proach is that if the grouped measures do not share
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common genetic aetiology it actually reduces the

power to find an effect. Thus the development of factor

models should be guided by the covariance within the

cognitive data and the degree to which that covariance

can be explained by shared genetic effects (current

efforts to address these issues are described by Bilder

et al. 2011).

Given evidence that shared genetic factors influence

g, cognitive domains and specific cognitive traits,

searching for genes influencing g is intrinsically a

multivariate analysis. Such an analysis is designed to

localize loci associated with each level of the three-

level hierarchy. In this context, focusing on g should be

more effective than searching for the genetic influ-

ences of each of the specific cognitive tests alone, as the

index of g is typically more reliable than individual

test scores and a single phenotype is assessed

(compared with many), reducing the need for correc-

tion for multiple comparisons. However, there is an

alternative view. It is possible that the g construct is

exceptionally polygenetic, with large numbers of

genes of very small effect (Lanktree et al. 2011), making

it very difficult to identify a single genetic target

(gene). In contrast, individual tests may have rela-

tively less complex genetic architectures, affording

them the potential for gene discovery. Eventually

empirical evidence will determine which of these

alternatives is more likely. Unfortunately, support

for either hypothesis is largely missing at this time.

GWAS era and challenges of power

An extensive literature now exists on cognitive studies

of single genes associated with increased illness risk

for neuropsychiatric diseases with childhood onset

(e.g. autism, ADHD), and adult onset (e.g. schizo-

phrenia, bipolar disorder, Alzheimer’s disease). With

few exceptions (e.g. apolipoprotein E), however,

identifying a specific role in cognition for individual

gene variants across these disorders has been chal-

lenging (Payton, 2009 ; Corvin et al. 2012). In the ma-

jority of cases, individual variants have not been

robustly associated with the illness phenotype, and no

clear functional variants have been identified, making

direct comparison of studies difficult. These difficult-

ies have been further hampered by the differences in

the cognitive measures investigated. What is perhaps

most striking about this literature is how closely the

cognitive phenotype findings recapitulate the illness

phenotype findings in term of the small proportion of

variation explained (about 1–2%) and the frequent

lack of replication. This, together with evidence of a

significant negative correlation between observed

effect and sample size (Rose & Donohoe, 2012),

highlights the necessity of incorporating large samples

in order to optimally detect these expected small

effects.

Recent (and relatively affordable) technological ad-

vances in genotyping platforms have resulted in a

move from single-gene studies towards genome-wide

association studies using platforms that can assay

more than 1 million genomic markers. This GWAS

approach has allowed for a relatively hypothesis-free

scan of the entire human genome, thereby markedly

increasing the genetic information. GWAS platforms

offer optimal coverage of common variation for single

nucleotide polymorphism (SNP)-based association

analyses and simultaneously capture structural vari-

ation, such as copy-number variation through the use

of intensity data analyses without requiring the im-

plementation of a secondary technology. Imputation,

or prediction, strategies capitalize on what is known

about the correlation among SNPs and provide

meaningful estimates of genomic variation that is not

directly genotyped on GWAS platforms and can fur-

ther improve resolution. These advantages notwith-

standing, GWAS methodology has certain challenges,

especially for cognitive phenomics.

The use of a genome-wide, hypothesis-free strategy

implies the need to handle large quantities of data

while attempting to maintain adequate statistical

power. While the standard in the field of research for

statistical significance has long been set at a p value

<0.05, the use of hundreds of thousands, or millions,

of statistical tests in GWAS analyses has necessitated

multiple-testing corrections that require conservative

a values : for example, a p value threshold in and

around 5r10x8 derived from a Bonferroni correction

for about 550 000 observations is often used, although

the p value will be smaller for >1 million SNPs. This,

together with the likelihood of individual common

variants explaining only a modest proportion of vari-

ation in cognition, highlights the need for extremely

large sample sizes (Manolio, 2010).

In an effort to surmount this problem, several large-

scale consortia have been organized across numerous

medical and neuropsychiatric disorders, which rep-

resent collaborative efforts to merge independent da-

tasets. In addition to increasing sample sizes, optimal

power can be achieved through the use of information

in the public domain, which can provide for targeted

selection of the smallest number of SNPs required to

tag common variation across the genome through the

use of linkage disequilibrium (LD) data in reference

samples.

There have been several genome-wide association

studies conducted that directly targeted normal hu-

man cognition, each of which highlight the importance

of large sample sizes and replication. The first GWAS

study of cognition (Papassotiropoulos et al. 2006)

Genetic basis of cognitive abilities 2031



focused on episodic memory in 351 young adults from

Switzerland and reported a significant effect of the

gene, KIBRA (kidney- and brain-expressed protein),

on free recall performance 5 min and 24 h after initial

word presentation. This result was replicated in a se-

cond independent cohort of subjects from the USA.

Subsequent cognitive GWAS studies have also sug-

gested that KIBRA could influence aspects of cognitive

function ; Need et al. (2009) reported that in a study of

over 1000 subjects recruited from college campuses,

10 genes achieved nominal significance for association

with specific aspects of cognition, including a SNP

(but not the same SNP as originally reported by

Papassotiropoulos et al. 2006) in KIBRA with verbal

learning and memory as assessed with the Cambridge

Neuropsychological Test Automated Battery. Other

cognitive GWAS studies (e.g. Seshadri et al. 2007 ;

Butcher et al. 2008) have been unable to observe these

effects, however, though substantive differences in

both the phenotypic and genotypic assessment strate-

gies hamper the interpretation of these data.

Luciano et al. (2011) describe the results of a colla-

borative meta-analysis of data derived from three co-

horts with a total sample size of 2379 individuals. The

primary outcome measure of this study was focused

on the domain of processing speed, a lower-level

cognitive construct that shares a large proportion of

genetic variance with higher-order processes (Luciano

et al. 2004). The primary results indicated no individ-

ual marker (SNP) that reached genome-wide statistical

significance. More recently, we undertook a GWAS of

general intelligence in a sample of 3511 healthy in-

dividuals (Davies et al. 2011). General intelligence in

this study was separated into crystallized intelligence

and fluid intelligence, based on a PCA of the overlap-

ping (but non-identical) measures available in the five

cohorts. Genome-wide analyses of SNP data in this

study indicated that genetic variants in LD with com-

mon SNPs account for 40–50% of the variation in

general intelligence. We furthermore observed, using

gene-based analysis, a genome-wide significant as-

sociation between general fluid-type intelligence

and variation in the formin-binding protein 1-like

(FNBP1L) gene. Taken together, these cognitive GWAS

studies highlight the expectation that small effect sizes

for individual loci will be the norm, reinforce the ad-

vantages of utilization of comparable genotyping

platforms, and emphasize the need for careful con-

sideration of the precise cognitive phenotype for

examination.

COGENT

These initial GWAS studies of normal human cog-

nition represent a step forward in our understanding

of the genetic architecture of cognitive functions.

Moreover, like other complex brain-based pheno-

types, such as schizophrenia and bipolar disorder,

these studies provide strong evidence of polygenic

influence on cognitive performance. They also high-

light the need for much larger samples of healthy

subjects who have been comprehensively phenotyped.

To this end, we have initiated an international

collaborative effort entitled ‘The Cognitive Genom-

ics Consortium (COGENT)’. The primary goal of

COGENT is to bring together existing databases with

information on normal human cognitive function

(healthy individuals) as well as genetic information in

the form of already completed genotyping conducted

on a genome-wide platform. By combining efforts, we

hope to achieve sample sizes of >8000 subjects and

the resultant statistical power necessary to detect

genetic loci associated with cognition with small ef-

fects. In brief, the consortium currently consists of nine

sites across seven countries and is led by the Zucker

Hillside Hospital – North Shore Long Island Jewish

Health System site in New York, USA. Each site is

contributing existing neurocognitive phenotype data

linked with genotype data from a high-quality gen-

ome-wide platform. Although platforms and pheno-

type measures vary by site, the consortium has formed

several committees to best handle synchronization

and several other practical issues in dealing with the

merging of data.

With data in hand, the first phase of analysis will

focus on identifying genetic variation associated with

general cognitive ability (g), as in Davies et al. (2011).

As mentioned in the first section of our review there

are several reasons to choose g, including (1) its ability

to account for, and indeed predict, a substantial per-

centage of the variance (about 40–50%) in perform-

ance on domain-specific cognitive functions (Deary

et al. 2009) ; (2) its well-established and high herita-

bility ; (3) the feasibility of extracting a measure of g

from the wide variety of cognitive tasks collected

across sites using PCA; and (4) its stability and com-

parability across samples even when different tasks

are used (Deary et al. 2009). Initial approaches will

utilize meta-analytic techniques to identify common

variants associated with g ; extensive discussions by

the COGENT phenotype committee led to the view

that merging g across sites with different ascertain-

ment and subject characteristics would be too prob-

lematic for a mega-analytic approach. Several key

decisions have been made in an effort to make the

calculation of g uniform across sites including : (1) a

minimum of three tests will be needed to calculate a

valid g ; (2) only one (best representative) variable per

neurocognitive task will be included in the calculation

of g ; (3) missing data will be addressed on a
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site-by-site basis, as it is largely dependent on the total

number of variables used to calculate g and the total

number of missing values per subject ; and (4) age and

sex will be controlled for a priori using regression.

Follow-up analyses, dependent on initial results, may

entail pathway-based approaches, additional sequen-

cing plans, and prospective data collection ; a mega-

analysis of individual measures for which significant

overlap across sites is available is also intended as a

second-phase analysis. Finally, we also anticipate that

COGENT will grow large enough to serve as a data-

base which will allow future questions related to re-

lationships between specific neuropsychiatric disorder

susceptibility genes and cognitive phenotypes to be

explored. Much larger samples will be required for

investigation of rare variation; however, dependent

on the final sample size, this may become a viable

option in the future.

Conclusion

Cognitive genomics is a rapidly changing field due to

the pace of technological advances in this area.

Advances in our understanding of the genetic archi-

tecture of cognition has derived in no small part from

the use of cognition as an intermediate phenotype

relevant to understanding how risk for psychiatric

illness is conferred at the level of brain function.

Research groups working in schizophrenia, autism

and ADHD, as well as in intellectual disability and

other childhood neurodevelopmental disorders have

amassed considerable experience in characterizing the

effects of ‘candidate ’ genes at the level of cognition.

As with illness consortia involving the collaboration of

dozens if not hundreds of researchers to achieve the

sample size required for adequately powered genome-

wide studies, cognitive genomic researchers have also

engaged in large-scale collaborations. As reviewed

here, doing so requires careful calibration not just of

genetic platforms and analysis, but also of cognitive

phenotypes across samples. This involves under-

standing and modelling the hierarchical relationship

between different domains of cognition and the re-

sultant correlation between individual tests. It in-

volves selecting measures of cognitive domains that

have already demonstrated heritability. In the case of

multiple tests, and non-identity between these tests,

factor analysis has been discussed as a method for re-

ducing the burden of multiple testing and extracting

an index of function across non-identical tests used by

different research sites. Use of Spearman’s g has been

described as one example of this approach in the field.

Extending this approach to other cognitive pheno-

types that have already been associated with genetic

variation (e.g. indices of memory and working

memory) is also likely to be of value. Finally, this re-

view highlights the close interplay between the fields

of cognitive and psychiatric genetics and the relevance

for discoveries that each may have to the other.
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