3,998 research outputs found

    Power Transmission Lines: Worldwide Research Trends

    Get PDF
    The importance of the quality and continuity of electricity supply is increasingly evident given the dependence of the world economy on its daily and instantaneous operation. In turn, the network is made up of power transmission lines. This study has been carried out based on the Scopus database, where all the publications, over 5000 documents, related to the topic of the power transmission lines have been analyzed up to the year 2022. This manuscript aims to highlight the main global research trends in power transmission lines and to detect which are the emerging areas. This manuscript cover three main aspects: First, the main scientific categories of these publications and their temporal trends. Second, the countries and affiliations that contribute to the research and their main research topics. Third, identification of the main trends in the field using the detection of scientific communities by means of the clustering method. The three main scientific categories found were Engineering, Energy and Computer Science. This research is most strongly developed in China, as the top 10 institutions are from this country, followed by USA and in third place by Russia. Twelve lines of research have been detected: Line Inspection, Leakage Current, Magnetic Fields, Fault Location, Icing, Lines Design, Natural Disasters, Temperature, Half-wave, Arc Flash, Pattern Recognition, and Artificial Intelligence. This research will open new perspectives for future research on power transmission lines

    Isolation and phenotyping of potential stem cells from the umbilical cord of the bottlenose dolphin(Tursiops truncatus)

    Get PDF
    We have successfully isolated cells with stem-like properties from bottlenose dolphin (Tursiops truncatus) umbilical cord. Our results show that this cetacean species has embryonic fetal and adult stem cells as do humans and other studied mammals. This accomplishment allows to eventually investigate whether dolphins, due to their unique adaptations to aquatic environments, have special stem cell lineages or distinctive mechanisms of cell programming. Further characterization of their potency to differentiate into multiple cell lineages would fulfill numerous applicative purposes. We characterized, developed and refined a new protocol for obtaining potential stem cells from umbilical cord tissues of the bottlenose dolphin. Tissue samples were taken from umbilical cords of successful deliveries immediately after placenta ejection and collection from the water. Umbilical cord samples (2-3 cm3) were excised and subjected to enzymatic digestion and mechanical dissociation. Viable cells from specimens resident in the Oceanografic Valencia were cultured and subsequently isolated and tested for pluripotent characteristics (cell morphology, phenotype and expression of surface markers). Cell viability was confirmed also after freezing/thawing. The established protocol is suitable for collection/isolation/culture of dolphin potential mesenchymal stem cells from dolphin umbilical cord, which can be deposited in cell banks for future research needs

    A modular RNA delivery system comprising spherical nucleic acids built on endosome-escaping polymeric nanoparticles

    Get PDF
    Nucleic acid therapeutics require delivery systems to reach their targets. Key challenges to be overcome include avoidance of accumulation in cells of the mononuclear phagocyte system and escape from the endosomal pathway. Spherical nucleic acids (SNAs), in which a gold nanoparticle supports a corona of oligonucleotides, are promising carriers for nucleic acids with valuable properties including nuclease resistance, sequence-specific loading and control of receptor-mediated endocytosis. However, SNAs accumulate in the endosomal pathway and are thus vulnerable to lysosomal degradation or recycling exocytosis. Here, an alternative SNA core based on diblock copolymer PMPC25–PDPA72 is investigated. This pH-sensitive polymer self-assembles into vesicles with an intrinsic ability to escape endosomes via osmotic shock triggered by acidification-induced disassembly. DNA oligos conjugated to PMPC25–PDPA72 molecules form vesicles, or polymersomes, with DNA coronae on luminal and external surfaces. Nucleic acid cargoes or nucleic acid-tagged targeting moieties can be attached by hybridization to the coronal DNA. These polymeric SNAs are used to deliver siRNA duplexes against C9orf72, a genetic target with therapeutic potential for amyotrophic lateral sclerosis, to motor neuron-like cells. By attaching a neuron-specific targeting peptide to the PSNA corona, effective knock-down is achieved at doses of 2 particles per cell

    Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin

    Full text link
    Single immune checkpoint blockade has shown limited activity in patients with neuroendocrine neoplasms (NENs). Here the authors report the results of a phase II clinical trial of durvalumab (anti-PD-L1) and tremelimumab (anti CTLA-4) in patients with advanced NENs of gastroenteropancreatic and lung origin. Single immune checkpoint blockade in advanced neuroendocrine neoplasms (NENs) shows limited efficacy; dual checkpoint blockade may improve treatment activity. Dune (NCT03095274) is a non-randomized controlled multicohort phase II clinical trial evaluating durvalumab plus tremelimumab activity and safety in advanced NENs. This study included 123 patients presenting between 2017 and 2019 with typical/atypical lung carcinoids (Cohort 1), G1/2 gastrointestinal (Cohort 2), G1/2 pancreatic (Cohort 3) and G3 gastroenteropancreatic (GEP) (Cohort 4) NENs; who progressed to standard therapies. Patients received 1500 mg durvalumab and 75 mg tremelimumab for up to 13 and 4 cycles (every 4 weeks), respectively. The primary objective was the 9-month clinical benefit rate (CBR) for cohorts 1-3 and 9-month overall survival (OS) rate for Cohort 4. Secondary endpoints included objective response rate, duration of response, progression-free survival according to irRECIST, overall survival, and safety. Correlation of PD-L1 expression with efficacy was exploratory. The 9-month CBR was 25.9%/35.5%/25% for Cohorts 1, 2, and 3 respectively. The 9-month OS rate for Cohort 4 was 36.1%, surpassing the futility threshold. Benefit in Cohort 4 was observed regardless of differentiation and Ki67 levels. PD-L1 combined scores did not correlate with treatment activity. Safety profile was consistent with that of prior studies. In conclusion, durvalumab plus tremelimumab is safe in NENs and shows modest survival benefit in G3 GEP-NENs; with one-third of these patients experiencing a prolonged OS

    Oncolytic viruses as therapeutic tools for pediatric brain tumors

    Get PDF
    In recent years, we have seen an important progress in our comprehension of the molecular basis of pediatric brain tumors (PBTs). However, they still represent the main cause of death by disease in children. Due to the poor prognosis of some types of PBTs and the long-term adverse effects associated with the traditional treatments, oncolytic viruses (OVs) have emerged as an interesting therapeutic option since they displayed safety and high tolerability in pre-clinical and clinical levels. In this review, we summarize the OVs evaluated in different types of PBTs, mostly in pre-clinical studies, and we discuss the possible future direction of research in this field. In this sense, one important aspect of OVs antitumoral effect is the stimulation of an immune response against the tumor which is necessary for a complete response in preclinical immunocompetent models and in the clinic. The role of the immune system in the response of OVs needs to be evaluated in PBTs and represents an experimental challenge due to the limited immunocompetent models of these diseases available for pre-clinical research

    Vascular and cognitive effects of cocoa-rich chocolate in postmenopausal women: a study protocol for a randomised clinical trial

    Get PDF
    Introduction The intake of polyphenols has certain health benefits. This study will aim to assess the effect of adding a daily amount of chocolate high in cocoa content and polyphenols to the normal diet on blood pressure, vascular function, cognitive performance, quality of life and body composition in postmenopausal women. Methods and analysis Here we plan a randomised clinical trial with two parallel groups involving a total of 140 women between 50 and 64 years in the postmenopausal period, defined by amenorrhoea of at least 12 consecutive months. The main variable will be the change in blood pressure. Secondary variables will be changes in vascular function, quality of life, cognitive performance and body composition. The intervention group will be given chocolate containing 99% cocoa, with instructions to add 10 g daily to their normal diet for 6 months. The daily nutritional contribution of this amount of chocolate is 59 kcal and 65.4 mg of polyphenols. There will be no intervention in the control group. All variables will be measured at the baseline visit and 3 and 6 months after randomisation, except cognitive performance and quality of life, which will only be assessed at baseline and at 6 months. Recruitment is scheduled to begin on 1 June 2018, and the study will continue until 31 May 2019. Ethics and dissemination This study was approved by the Clinical Research Ethics Committee of the Health Area of Salamanca, Spain (‘CREC of Health Area of Salamanca’), in February 2018. A SPIRIT checklist is available for this protocol. The clinical trial has been registered at ClinicalTrials. gov provided by the US National Library of Medicine, number NCT03492983. The results will be disseminated through open access peer-reviewed journals, conference presentations, broadcast media and a presentation to stakeholders.Gerencia Regional de Castilla y León (GRS 1583/B/1

    Methodology to improve water and energy use by proper irrigationscheduling in pressurised networks

    Full text link
    With the aim of reducing energy consumption and improving water use in pressurised irrigation systems, the methodology to minimise energy consumption by grouping intakes of pressurised irrigation networks into sectors, as developed by Jimenez Bello et al. (2010a), was modified to enable irrigation intakes to operate during the scheduled period for each intake instead of operating during restricted irrigation periods of the same length. Moreover, a method was developed to detect the maximum number of intakes that can operate without extra energy if the source has sufficient head to feed at least some of the intakes. These methods were applied to a Mediterranean irrigation system, where the total cropped area was mainly citrus orchards. In this case study, water was allocated to two groups of intakes, one fed by gravity and the other by pumps. A saving of 36.3 % was achieved by increasing the total volume supplied by gravity, decreasing the injection pump head, and improving the pump performance. Therefore, all the intakes only operated during the irrigation periods at the minimum required pressure.This research was supported by funds from Climate-KIC AGADAPT and from EU 7th Framework Programme FIGARO projects. The authors wish to acknowledge the support provided by Picassent Sector XI staff. The revision of this paper was funded by "The Universitat Politecnica de Valencia, Spain".Jiménez Bello, MA.; Royuela Tomás, Á.; Manzano Juarez, J.; García Prats, A.; Martínez Alzamora, F. (2015). Methodology to improve water and energy use by proper irrigationscheduling in pressurised networks. Agricultural Water Management. 149:91-101. doi:10.1016/j.agwat.2014.10.026S9110114

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal
    corecore