908 research outputs found

    Interferometric Observations of the T Tauri Stars in the MBM 12 Cloud

    Get PDF
    We have carried out a millimeter interferometric continuum survey toward 7 YSOs in the MBM 12 cloud. Thermal emissions associated with 2 YSOs were detected above the 3-σ\sigma level at 2.1 mm, and one also showed a 1.3 mm thermal emission. Another object was marginally detected at 2.1 mm. Spectral energy distributions of the YSOs are well fitted by a simple power-law disk model. Masses of the circumstellar disks are estimated to be an order of 0.05 M_{\sun}. The circumstellar disks in the MBM 12 cloud have properties in common with the disks in nearby star-forming regions, in terms of disk parameters such as a disk mass, as well as an infrared excess.Comment: 9 pages, 3 figures, accepted by ApJ Letter

    High Contrast Imaging of the Close Environment of HD 142527 -

    Full text link
    Context. It has long been suggested that circumstellar disks surrounding young stars may be the signposts of planets, and still more since the recent discoveries of embedded substellar companions. The planet-disk interaction may create, according to models, large structures, gaps, rings or spirals, in the disk. In that sense, the Herbig star HD 142527 is particularly compelling as, its massive disk displays intriguing asymmetries that suggest the existence of a dynamical peturber of unknown nature. Aims. Our goal was to obtain deep thermal images of the close circumstellar environment of HD 142527 to re-image the reported close-in structures (cavity, spiral arms) of the disk and to search for stellar and substellar companions that could be connected to their presence. Results. The circumstellar environment of HD 142527 is revealed at an unprecedented spatial resolution down to the sub arcsecond level for the first time at 3.8 microns. Our images reveal important radial and azimuthal asymmetries which invalidate an elliptical shape for the disk as previously proposed. It rather suggests a bright inhomogeneous spiral arm plus various fainter spiral arms. We also confirm an inner cavity down to 30 AU and two important dips at position angles of 0 and 135 deg. The detection performance in angular differential imaging enables the exploration of the planetary mass regime for projected physical separations as close as 40 AU. The use of our detection map together with Monte Carlo simulations sets stringent constraints on the presence of planetary mass, brown dwarf or stellar companions as a function of the semi-major axis. They severely constrain the presence of massive giant planets with semi-major axis beyond 50AU, i.e. probably within the large disk's cavity that radially extends up to 145 AU or even further outside.Comment: 8 pages, 7 figures, accepted in A&

    Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk

    Full text link
    We present sub-arcsecond images of AB Auriga obtained with the IRAM Plateau de Bure interferometer in the isotopologues of CO, and in continuum at 3 and 1.3 mm. Instead of being centrally peaked, the continuum emission is dominated by a bright, asymmetric (spiral-like) feature at about 140 AU from the central star. The large scale molecular structure suggests the AB Aur disk is inclined between 23 and 43 degrees, but the strong asymmetry of the continuum and molecular emission prevents an accurate determination of the inclination of the inner parts. We find significant non-Keplerian motion, with a best fit exponent for the rotation velocity law of 0.41 +/- 0.01, but no evidence for radial motions. The disk has an inner hole about 70 AU in radius. The disk is warm and shows no evidence of depletion of CO. The dust properties suggest the dust is less evolved than in typical T Tauri disks. Both the spiral-like feature and the departure from purely Keplerian motions indicates the AB Aur disk is not in quasi-equilibrium. Disk self-gravity is insufficient to create the perturbation. This behavior may be related either to an early phase of star formation in which the Keplerian regime is not yet fully established and/or to a disturbance of yet unknown origin. An alternate, but unproven, possibility is that of a low mass companion located about 40 AU from AB Aur.Comment: 10 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    The shadow knows: using shadows to investigate the structure of the pretransitional disk of HD 100453

    Full text link
    We present GPI polarized intensity imagery of HD 100453 in Y-, J-, and K1 bands which reveals an inner gap (9189 - 18 au), an outer disk (183918-39 au) with two prominent spiral arms, and two azimuthally-localized dark features also present in SPHERE total intensity images (Wagner 2015). SED fitting further suggests the radial gap extends to 11 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by a inner disk which is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D (Whitney 2013), we construct a model of the disk which allows us to determine its physical properties in more detail. From the angular separation of the features we measure the difference in inclination between the disks 45^{\circ}, and their major axes, PA = 140^{\circ} east of north for the outer disk and 100^{\circ}for the inner disk. We find an outer disk inclination of 25±1025 \pm 10^{\circ} from face-on in broad agreement with the Wagner 2015 measurement of 34^{\circ}. SPHERE data in J- and H-bands indicate a reddish disk which points to HD 100453 evolving into a young debris disk

    The Case of AB Aurigae's Disk in Polarized Light: Is There Truly a Gap?

    Full text link
    Using the NICMOS coronagraph, we have obtained high-contrast 2.0 micron imaging polarimetry and 1.1 micron imaging of the circumstellar disk around AB Aurigae on angular scales of 0.3-3 arcsec (40-550 AU). Unlike previous observations, these data resolve the disk in both total and polarized intensity, allowing accurate measurement of the spatial variation of polarization fraction across the disk. Using these observations we investigate the apparent "gap" in the disk reported by Oppenheimer et al. 2008. In polarized intensity, the NICMOS data closely reproduces the morphology seen by Oppenheimer et al., yet in total intensity we find no evidence for a gap in either our 1.1 or 2.0 micron images. We find instead that region has lower polarization fraction, without a significant decrease in total scattered light, consistent with expectations for back-scattered light on the far side of an inclined disk. Radiative transfer models demonstrate this explanation fits the observations. Geometrical scattering effects are entirely sufficient to explain the observed morphology without any need to invoke a gap or protoplanet at that location.Comment: Accepted to ApJ Letter

    Collisional dust avalanches in debris discs

    Get PDF
    We quantitatively investigate how collisional avalanches may developin debris discs as the result of the initial break-up of a planetesimal or comet-like object, triggering a collisional chain reaction due to outward escaping small dust grains. We use a specifically developed numerical code that follows both the spatial distribution of the dust grains and the evolution of their size-frequency distribution due to collisions. We investigate how strongly avalanche propagation depends on different parameters (e.g., amount of dust released in the initial break-up, collisional properties of dust grains and their distribution in the disc). Our simulations show that avalanches evolve on timescales of ~1000 years, propagating outwards following a spiral-like pattern, and that their amplitude exponentially depends on the number density of dust grains in the system. We estimate a probability for witnessing an avalanche event as a function of disc densities, for a gas-free case around an A-type star, and find that features created by avalanche propagation can lead to observable asymmetries for dusty systems with a beta Pictoris-like dust content or higher. Characteristic observable features include: (i) a brightness asymmetry of the two sides for a disc viewed edge-on, and (ii) a one-armed open spiral or a lumpy structure in the case of face-on orientation. A possible system in which avalanche-induced structures might have been observed is the edge-on seen debris disc around HD32297, which displays a strong luminosity difference between its two sides.Comment: 18 pages, 19 figures; has been accepted for publication in Astronomy and Astrophysics, section 6. Interstellar and circumstellar matter. The official date of acceptance is 29/08/200
    corecore