89 research outputs found

    Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease

    Get PDF
    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation

    Loss of Caveolin-1 Accelerates Neurodegeneration and Aging

    Get PDF
    The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may represent a sequela for neurodegenerative diseases such as Alzheimer's. Membrane/lipid rafts (MLR), discrete regions of the plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has implications for neurodegenerative diseases such as Alzheimer's disease.We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag, >18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration. Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Aβ, P-Tau, and astrogliosis, decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Aβ expression.Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a non-mutational model for Alzheimer's disease

    A Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease

    Get PDF
    Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (Aß) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model

    Control of synaptic vesicle endocytosis by an extracellular signalling molecule

    Get PDF
    Signalling cascades control multiple aspects of presynaptic function. Synaptic vesicle endocytosis was assumed to be exempt from modulation, due to its essential role maintaining synaptic vesicle supply and thus neurotransmission. Here we show that brain-derived neurotrophic factor arrests the rephosphorylation of the endocytosis enzyme dynamin I via an inhibition of glycogen synthase kinase 3. This event results in a selective inhibition of activity-dependent bulk endocytosis during high-intensity firing. Furthermore, the continued presence of brain-derived neurotrophic factor alleviates the rundown of neurotransmission during high activity. Thus, synaptic strength can be modulated by extracellular signalling molecules via a direct inhibition of a synaptic vesicle endocytosis mode

    Enhancement of AMPA-mediated synaptic transmission by the protein phosphatase inhibitor calyculin A in rat hippocampal slices

    No full text
    Using the phosphatase inhibitor calyculin A, we have examined the influence of phosphorylation on synaptic transmission and plasticity in rat CA1 hippocampal slices. Bath application of 0.5-1 microM of calyculin A resulted in an increase of 42.6 +/- 2.9% in synaptic responses. The effect produced by calyculin A was not accompanied by changes in fibre volley, was not associated with changes in paired-pulse facilitation, and could be reproduced by intracellular injection of the compound, thereby indicating a postsynaptic action. Also, the synaptic enhancement produced by calyculin A was expressed only by potentials mediated by amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not by the NMDA responses recorded in the presence of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and low magnesium. The effect of calyculin A could be prevented by KN-62, an inhibitor of calcium/calmodulin-dependent protein kinase II. Long-term potentiation could still be induced in the presence of calyculin A, but the effect of the compound was slightly reduced on potentiated compared with control pathways. These results indicate that calyculin A can selectively increase the efficacy of AMPA receptor-mediated synaptic transmission at excitatory synapses

    Heterosynaptic interactions between LTP and LTD in CA1 hippocampal slices

    No full text
    Experiments in which several high and/or low frequency stimulation patterns were applied to different groups of afferents in CA1 hippocampal slices revealed the existence of heterosynaptic interactions between LTP and LTD. Specifically, we report that repeated induction of LTD on one input was associated with a heterosynaptic reversal of the LTP previously induced on a separate pathway. Reapplication of high frequency stimulation at the end of the experiment reinstated LTP. This heterosynaptic reversal occurred without modification of naive responses, and it was prevented by D-AP5, an NMDA receptor antagonist, or cyclosporin A, a calcineurin inhibitor. Similarly, induction of LTP on one input was found to reverse heterosynaptically the LTD previously induced on a separate pathway. This effect was also sensitive to D-AP5, it occurred without modification of naive pathways, and LTD could be reinstated by low frequency trains. These results indicate that repeated induction of LTP or LTD on one group of afferents can reset synaptic efficacy at other nonactivated synapses

    Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus

    Get PDF
    Brain-derived neurotrophic factor (BDNF) modulates glutamatergic excitatory transmission in hippocampal primary cultures by acting at a presynaptic locus. Although it has been suggested that BDNF also modulates adult hippocampus glutamatergic transmission, this remains a matter of controversy. To clarify a putative role for this neurotrophin in the modulation of glutamate release we applied exogenous BDNF to isolated adult rat hippocampal nerve terminals. BDNF, at 100 ng/ml, potentiated by 25% the K+-evoked release of [3H]glutamate from hippocampal synaptosomes. The small effect of BDNF on [3H]glutamate release correlated with a modest increase in phospholipase Cgamma (PLCgamma) phosphorylation, and with the lack of effect of BDNF on extracellular-signal regulated kinase (ERK) and Akt phosphorylation. Immunocytochemistry studies demonstrated that only about one-third of glutamatergic synaptosomes were positive for TrkB immunoreactivity. Furthermore, biotinylation and subsynaptic fractionation studies showed that only one-fourth of total full-length TrkB was present at the plasma membrane, evenly distributed between the presynaptic active zone and the postsynaptic density. These results indicate that BDNF modulates synaptic transmission presynaptically in a small subset of hippocampal glutamatergic synapses that contain TrkB and that express the receptor on the plasma membrane. © 2006 Wiley-Liss, Inc
    • …
    corecore