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Control of synaptic vesicle endocytosis
by an extracellular signalling molecule
Karen J. Smillie1, Jonathan Pawson1, Emma M. Perkins1, Mandy Jackson1 & Michael A. Cousin1

Signalling cascades control multiple aspects of presynaptic function. Synaptic vesicle endo-

cytosis was assumed to be exempt from modulation, due to its essential role maintaining

synaptic vesicle supply and thus neurotransmission. Here we show that brain-derived

neurotrophic factor arrests the rephosphorylation of the endocytosis enzyme dynamin I via an

inhibition of glycogen synthase kinase 3. This event results in a selective inhibition of activity-

dependent bulk endocytosis during high-intensity firing. Furthermore, the continued presence

of brain-derived neurotrophic factor alleviates the rundown of neurotransmission during high

activity. Thus, synaptic strength can be modulated by extracellular signalling molecules via a

direct inhibition of a synaptic vesicle endocytosis mode.
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N
eurotransmitter release from central nerve terminals is
modulated by multiple signalling cascades activated by
extracellular ligands1. This process facilitates the fine

control of synaptic output by either inhibitory/excitatory
neurotransmission or retrograde neurotransmitters. In contrast
synaptic vesicle (SV) endocytosis has not been demonstrated to
be modulated by extracellular signalling cascades, presumably due
to its obligatory role in maintaining the available stock of SVs
inside nerve terminals.

SVs are retrieved from the nerve terminal plasma membrane
after exocytosis by either clathrin-mediated endocytosis (CME) or
activity-dependent bulk endocytosis (ADBE). CME is the
dominant SV retrieval mode during low intensity stimulation2,3

and retrieves single SVs de novo from the plasma membrane. In
contrast, ADBE is triggered during high-intensity stimulation
and forms endosomes directly from large plasma membrane
invaginations4. SVs then bud from these endosomes in a clathrin-
and adaptor protein-dependent manner5–7.

ADBE is tightly coupled to neuronal activity via the dephos-
phorylation of the large GTPase dynamin I at two sites (Ser-774
and Ser-778) by the calcium-dependent phosphatase calcineurin8.
After stimulation terminates dynamin I is rephosphorylated
firstly on Ser-778 by the constitutively active enzyme cyclin-
dependent kinase 5 (cdk5), an event which permits phos-
phorylation of Ser-774 by glycogen synthase kinase 3 (GSK3)9.
The rephosphorylation of dynamin I by either cdk5 or GSK3 is
essential for the triggering of ADBE by subsequent stimuli9,10.

Brain-derived neurotrophic factor (BDNF) has established
roles in the long-term control of neuronal migration, survival and
development11. In addition to its trophic actions, acute exposure
to BDNF has both presynaptic and postsynaptic effects on
neurotransmission11,12. BDNF signals through the TrkB receptor
to activate a number of intracellular signalling cascades, such as
the mitogen-activated protein kinase (MAPK), the phospholipase
Cg and phosphatidylinositol 3-kinase (PI3K) pathways. Activa-
tion of the PI3K pathway results in a downstream inhibition of
GSK3 (ref. 13); therefore, we hypothesized that BDNF may negatively
control ADBE via an inhibition of dynamin I rephosphorylation.

We show that application of BDNF inhibits GSK3-dependent
rephosphorylation of Ser-774 on dynamin I via a PI3K cascade.
Furthermore, we find that BDNF negatively regulates ADBE, and
that this inhibition results in an enhancement of neurotransmis-
sion but only after a prior priming stimulus. Thus, we have shown
that extracellular signalling molecules can modulate neurotrans-
mission via a differential control of a key SV endocytosis mode.

Results
BDNF inhibits dynamin I rephosphorylation on Ser-774. The
rephosphorylation of Ser-774 on dynamin I by GSK3 is essential
for the triggering of multiple cycles of ADBE9. This suggests that
ADBE should be negatively regulated by signalling cascades that
inhibit GSK3 activity, as blocking dynamin I rephosphorylation
arrests this endocytosis mode. One potential signalling molecule
that could inhibit ADBE is BDNF, as it can inhibit GSK3 via
activation of a PI3K-dependent cascade12 (Fig. 1a). To test this
hypothesis, we first confirmed that BDNF could control GSK3
activity in our primary neuronal culture system, cerebellar
granule neurons (CGNs). GSK3 activity can be reported by the
extent of phosphorylation of Ser-9 on the enzyme using phos-
phorylation-specific antibodies. In CGNs, Akt is activated by
high-frequency stimulation and transiently phosphorylates GSK3
on Ser-9 (ref. 14). This effect was replicated in this study, with
strong stimulation evoking a transient phosphorylation of both
Akt and GSK3 which returned to resting levels on repolarization
of the cultures (Fig. 1c,e). Application of BDNF (100 ng ml� 1)

resulted in a hyperphosphorylation of both Akt and GSK3 in all
experimental conditions (Fig. 1c,e), indicating BDNF triggers an
intracellular signalling cascade that phosphorylates both Akt and
GSK3.

We next determined which intracellular signalling cascade
BDNF was operating through to control GSK3 activity. We first
investigated the potential role of TrkB receptors as they are
highly expressed in CGNs15,16. Application of the tyrosine kinase
antagonist K252a inhibited BDNF-induced phosphorylation
of both Akt and GSK3, indicating a TrkB-specific effect
(Supplementary Fig. S1). TrkB receptors signal via multiple
intracellular signalling cascades, one of which utilizes PI3K12. In
this cascade production of PI(3,4,5)P3 by PI3K activates
phosphoinositide-dependent kinase 1 (PDK1) to phosphorylate
and activate Akt. To determine whether BDNF signals via PI3K,
the selective antagonist LY294002 (10 mM) was applied to CGNs.
LY294002 abolished BDNF-induced hyperphosphorylation of
both Akt and GSK3 (Fig. 1d,f) indicating BDNF exerts its effect
via a PI3K-dependent cascade.

Phosphorylation of GSK3 inhibits its activity, therefore we next
assessed whether BDNF could control dynamin I Ser-774
rephosphorylation, an event mediated by this enzyme9 (Fig. 2a).
In the absence of BDNF, Ser-774 was dephosphorylated on
depolarization, and then rephosphorylated on removal of the
stimulus (Fig. 2c). This rephosphorylation event was abolished in
the presence of BDNF (Fig. 2c). Importantly, BDNF had no effect
on the rephosphorylation of Ser-778 on dynamin I (Fig. 2e), an
event mediated by cdk5 (ref. 9). Thus, BDNF selectively inhibits
the rephosphorylation of Ser-774 on dynamin I via inhibition of
GSK3.

We next examined whether inhibition of PI3K could reverse
the observed effects of BDNF on GSK3-dependent dynamin I
Ser-774 rephosphorylation. This was the case, with application of
LY294002 preventing the BDNF-mediated inhibition of dynamin
I Ser-774 rephosphorylation (Fig. 2d), while having no effect on
cdk5-dependnet Ser-778 rephosphorylation (Fig. 2f). Thus,
GSK3-dependent phosphorylation of Ser-774 is negativity
regulated by a PI3K/PDK1/Akt signalling cascade that is triggered
by BDNF.

BDNF selectively inhibits ADBE. GSK3-dependent Ser-774
rephosphorylation controls ADBE9, therefore inhibition of this
event by BDNF has implications for presynaptic function during
elevated neuronal activity. Therefore, we next determined
whether BDNF could negatively control ADBE. First, we
examined the uptake of large (40 kDa) fluorescent dextrans, as
they specifically report fluid phase uptake via ADBE due to size
exclusion from SVs4,9. Acute application of BDNF had no effect
on dextran uptake evoked by a train of high-frequency action
potentials (80 Hz, 10 s, Fig. 3a). However, inhibition of dynamin I
Ser-774 rephosphorylation will not be apparent under these
conditions, as dynamin I is highly phosphorylated at rest and
dephosphorylated on stimulation (Fig. 2c). To reveal a potential
regulatory effect of BDNF on ADBE, cultures were challenged
with a priming stimulus to dephosphorylate dynamin I, rested in
the continued presence of BDNF (to inhibit dynamin I repho-
sphorylation) and then dextran uptake was assessed during a
second stimulation (Fig. 3b). Under these conditions, BDNF
produced a robust inhibition of dextran uptake, which was pre-
vented by the PI3K antagonist LY294002 (Fig. 3b). This inhibi-
tion was occluded by the GSK3 antagonist CT99021 (Fig. 3b)
indicating BDNF was mediating its effect via this enzyme and
almost certainly via inhibition of Ser-774 rephosphorylation.
A BDNF-dependent inhibition of ADBE was also observed in
primary hippocampal cultures, indicating its effect was not
limited to cerebellar neurons (Supplementary Fig. S2).
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To confirm that Ser-774 on dynamin I was the principal target of
BDNF, we repeated the dextran uptake experiments in neurons
expressing either wild-type dynamin I or a phospho-null version
mutated at Ser-774. Neurons expressing the S774A mutant displayed
a large inhibition of dextran uptake at S1 compared with wild-type,
as previously shown9 (Fig. 3c). The S774A mutant inhibited dextran

uptake at S2 to an almost identical extent, with the level of inhibition
equal to wild-type expressing neurons in the presence of BDNF
(Fig. 3d). Importantly, BDNF did not reduce dextran uptake further
in S774A-expressing neurons (Fig. 3d) providing compelling
evidence that BDNF inhibits ADBE via arrest of dynamin I
Ser-774 phosphorylation, but only after a prior priming stimulus.
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Figure 1 | BDNF inhibits GSK3 activity via a PI3K-dependent cascade. (a) Scheme illustrating that BDNF would activate a signalling cascade, which would
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stimulation CGNs were repolarized for 10 min. Samples were prepared from cultures before stimulation (basal, B), directly after KCl stimulation (K) or after
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(PGSK3 Ser-9) on immunoblots. Quantitative analysis is shown in the graphs in (c–f). These graphs display the extent of phosphorylation of either Ser-473

on Akt (c,d) or Ser-9 on GSK3 (e,f). All values were normalized to the amount of synaptophysin (SYP) as a loading control, and expressed as a percentage
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To confirm the negative control of ADBE by BDNF,
morphological studies were performed examining uptake of the
fluid phase marker horse radish peroxidase (HRP). Triggering of
ADBE results in the appearance of HRP-labelled endosomes,
whereas CME generates HRP-labelled SVs4 (Fig. 4b–e). Acute

application of BDNF had no effect on the number of HRP-
labelled endosomes generated by a strong stimulation (Fig. 4f).
However, when BDNF was present during and after a priming
depolarization (S1) the number of HRP-labelled endosomes
generated by a second stimulus (S2) was significantly reduced
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(Fig. 4f). Importantly, BDNF had no effect on the number of
HRP-labelled SVs at either S1 or S2 (Fig. 4g), indicating no effect
on CME. Thus, using two independent assays, BDNF negatively
controls ADBE when present during a prior priming stimulus.

BDNF increases both evoked and spontaneous neurotransmit-
ter release in a number of experimental systems12. To determine
whether this occurred in our culture system we monitored SV-
fusion events using the pH-sensitive genetic reporter sypHy2.
SypHy is the SV protein synaptophysin with a-pH-sensitive GFP
fused to one of its luminal loops. It reports SV exocytosis as its
fluorescence is quenched by the acidic interior of the SV, and then
unquenched as the SV fuses and encounters the neutral pH of the
extracellular medium. To isolate SV exocytosis from subsequent
SV endocytosis and reacidification, we inhibited the vesicular
ATPase with bafilomycin A1. During 10 min of bafilomycin A1
treatment, the sypHy response gradually increased in transfected
neurons, indicative of spontaneous SV fusion17 (Fig. 5a). BDNF
was co-applied with bafilomycin A1 to determine whether it
would increase spontaneous activity (Fig. 5a). No significant

difference in sypHy fluorescence was observed during the 10 min
incubation period compared with control (Fig. 5), suggesting that
BDNF did not alter spontaneous SV turnover in our cultures.
After 10 min, a train of 800 action potentials (80 Hz) was
delivered to evoke SV fusion in either BDNF-treated or control
neurons. A robust increase in sypHy fluorescence was observed in
both conditions, which was unaffected by the presence of BDNF
(Fig. 5a,b), indicating no effect on evoked SV fusion. To confirm a
lack of effect of BDNF on SV exocytosis in our culture system, we
monitored the extent of unloading of the fluorescent dye FM2-10
after application of BDNF. Exposure to BDNF elicited no change
in the extent of SV fusion when compared with control neurons
(Supplementary Fig. S3). Therefore, BDNF selectively inhibits
ADBE during high-frequency stimulation in CGN nerve
terminals.

BDNF sustains neurotransmission during high-frequency
stimuli. The selective control of ADBE by BDNF suggests that it
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should modulate neurotransmission during high-frequency firing,
as ADBE is the dominant mechanism of SV retrieval under these
conditions4. To test this, we examined the effect of applying
BDNF on neurotransmission at the parallel fibre—Purkinje cell
synapse in intact cerebellar slices. Specifically, we determined the
effect of BDNF on synaptic depression, where neurotransmission
is progressively decreased during a high-frequency train of action
potentials. This depression is exacerbated when CME is inhibited,
reflecting a depletion of available SVs for release18–20. Application
of BDNF had no effect on the evoked depression in slices (600
action potentials, 40 Hz) when it was added 1 h before stimulation
(Supplementary Fig. S4). In contrast, slices that had experienced a

prior identical depolarizing stimulus in the presence of BDNF
exhibited a profound relief of depression when challenged with a
second stimulus (S2) 10 min later (Fig. 6a,b). This relief of
depression at S2 was prevented by the presence of LY294002 and
occluded by CT99021 (Fig. 6c–f), indicating that this effect was
mediated by the same cascade that controls GSK3 repho-
sphorylation of Ser-774 on dynamin I. The relief of depression
was not due to an increase in release probability, as paired pulse
facilitation was not altered at either S1 or S2 by BDNF
(Supplementary Fig. S5). Thus, BDNF enhances synaptic trans-
mission during high-intensity firing via a negative control of both
GSK3 activity and ADBE.

Discussion
Presynaptic control of neurotransmitter release is a well-
established phenomenon and involves control of the SV-fusion
event via modulation of either neuronal excitability, calcium
influx or release probability21. We have shown that extracellular
signalling molecules can also control SV endocytosis during
high-intensity stimulation, with subsequent consequences for
neurotransmission. This work reveals a novel regulatory
mechanism to control neurotransmission during high-intensity
stimulation and to our knowledge this is the first demonstration
of an extracellular signalling cascade controlling SV endocytosis.

Where possible we evoked ADBE using high-frequency action
potentials, however, the design of particular experiments
necessitated the use of elevated KCl. We have extensively
characterized these two stimuli in our culture system and have
found that in terms of (1) the extent of SV exocytosis evoked22,
(2) the amount of ADBE and CME triggered23, (3) the
replenishment of both the RRP and reserve pools24 and (4) the
extent of Akt and GSK3 phosphorylation14, application of 50 mM
KCl is equivalent to the delivery of 800 action potentials at 80 Hz.

GSK3-dependent phosphorylation of Ser-774 on dynamin I is
essential for ADBE to proceed9. As GSK3 activity is negatively
regulated by phosphorylation, we searched for potential candidate
signalling molecules that may control ADBE. BDNF was selected
for study as CGNs express TrkB receptors15,16 and BDNF is
released in an activity-dependent manner from central
neurons25–28. We show that BDNF mediates its action via a
PI3K-dependent intracellular signalling cascade that activates Akt
to inhibit GSK3, resulting in arrest of dynamin Ser-774
rephosphorylation. We could not directly test the effect of TrkB
receptor inhibition on dynamin I rephosphorylation, as K252a
reduced Ser-774 rephosphorylation by B80% in the absence of
BDNF. A key point relating to the inhibition of dynamin I
rephosphorylation via this cascade is that the effects of BDNF on
both ADBE and neurotransmission are only revealed after a
priming stimulus. Thus, there is no acute effect of this cascade on
either process, providing compelling evidence that the
mechanism by which BDNF acts is a protein rephosphorylation
event that occurs after stimulation terminates. In agreement,
identical results on ADBE and neurotransmission were observed
using either cdk5 or GSK3 antagonists9,10.

BDNF increases spontaneous and evoked neurotransmitter
release in a number of neuronal systems29–34. However, other
studies have reported no effect on baseline transmission30,35–37.
The presynaptic mechanism by which BDNF increases glutamate
release is TrkB-dependent38 and mediated by an intracellular
MAPK-signalling cascade34. Phosphorylation of the SV protein
synapsin is essential in mediating the BDNF effect, as either
synapsin I knockout or mutation of the MAPK phosphorylation
site on synapsin I negated this effect34,39. A requirement for the
myosin VI motor complex has also been proposed, potentially
involving an actin-dependent delivery of SVs40. In our culture
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(c) and at S2 for either Ctrl (d) or BDNF (e). White arrows indicate

HRP-labelled endosomes, black arrows indicate HRP-labelled SVs. Scale bar,

150 nm for b–e. Mean number of HRP-labelled (solid bars) or empty

(open bars) endosomes (f) or SVs (g) at either S1 or S2 in control (Ctrl)

or BDNF-treated (BD) cells ±s.e.m. (n¼ 3 independent experiments for all

conditions; one-way analysis of variance (ANOVA). ***Po0.001 compared

with all other conditions).
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system, we see no enhancement of evoked SV exocytosis by
BDNF. This is most probably due to the stimulation conditions,
which were specifically chosen to ensure any facilitation of SV
exocytosis by BDNF would be minimal. Thus, by evoking near
maximal responses (required to trigger ADBE) we have also
allowed the BDNF-dependent modulation of SV endocytosis to
be isolated from potentially complicating facilitatory effects on SV
exocytosis.

We observed a robust relief of synaptic depression by BDNF at
cerebellar synapses, which was only revealed after a prior train of
action potentials. Previous work in hippocampal neurons has
shown that BDNF increases post-tetanic potentiation, via a
MAPK-dependent phosphorylation of synapsin I39. To eliminate
a potential complication due to this effect, conditions were
established to discount any increase in quantal content by
normalizing all EPSCs to the first pulse. Furthermore, we see a
complete reversal of BDNF effects by inhibition of PI3K,
eliminating a potential role for MAPK. Finally, we see no
effects on release probability by application of BDNF in our
cerebellar slice system, in agreement with previous observations
which showed minimal effects on paired pulse facilitation on
BDNF application41.

BDNF has both presynaptic and postsynaptic42 effects,
therefore to ensure any modulation of GSK3 was presynaptic,
we included the GSK3 antagonist CT99021 in the patch pipette.
The fact that no effect was observed on neurotransmission during
the first train of high-frequency stimulation also ruled out other
postsynaptic intracellular signalling cascades from playing a
BDNF-dependent role. Thus, the relief of synaptic depression by
BDNF only after a prior stimulation strongly indicates a
presynaptic role for BDNF. The relief of synaptic depression by
BDNF agrees with studies in hippocampal slices, which showed
that inhibition of either presynaptic GSK3 or knockout of
syndapin I (both of which arrest ADBE) resulted in a relief of
neurotransmission9,43. Thus, agents that block ADBE seem to
increase synaptic transmission in contrast to inhibition of CME,
which exacerbates a depression18–20. The mechanism by which
this occurs is still unclear. For example, there is no consistent
increase in either the extent of CME9,10,23 or RRP size24 during
inhibition of ADBE in neuronal culture. Another possibility is
that SV turnover is more efficient when ADBE is inhibited, as all

available SV membrane and cargo will be packaged into release
ready SVs at the plasma membrane, rather than via a series of
endosomal intermediates7. Regardless of mechanism, it is
becoming apparent that modulation of SV endocytosis modes
could be a route for bidirectional manipulation of neuro-
transmission during high-frequency firing.

A key question raised by this study is when would BDNF be
released to impact on ADBE? A number of studies have shown
that BDNF is released by neurons during high-intensity stimula-
tion25,26. Recent work using GFP-tagged BDNF in primary
hippocampal cultures have suggested that the majority of BDNF
that is secreted is via dendritic release, potentially feeding back to
modulate presynaptic function27. In agreement BDNF is proposed
to be released in a retrograde manner to maintain neuro-
transmission at the parallel fibre—Purkinje cell synapse41.
Intense action potential firing can also lead to presynaptic BDNF
release27. Such firing may occur in pathophysiolgical conditions
such as epileptic seizure. In agreement epilepsy is associated with
increased levels of BDNF44, which may exacerbate seizures by
increasing neurotransmission via its block of ADBE.

We have shown that activation of a presynaptic signalling
cascade by an extracellular signalling molecule, BDNF, results in
inhibition of GSK3 activity, the arrest of both dynamin Ser-774
rephosphorylation and ADBE and finally enhancement of
neurotransmission during high-frequency stimulation. This
suggests that different SV endocytosis modes, and ADBE in
particular, may be a potential target for strategies to modify
synaptic strength in either neurodegenerative conditions or
disorders of neuronal excitability such as epilepsy.

Methods
Materials. FM2-10, tetramethyrhodamine-dextran, Lipofectamine 2000,
penicillin/streptomycin, phosphate buffered salts, fetal calf serum and minimal
essential medium, were obtained from Life Technologies (Paisley, UK). Synapto-
physin antibody was from Synaptic Systems (Germany). The dynamin I phos-
phospecific Ser-774 and Ser-778 antibodies were from AbD Serotec (Cambridge,
UK). The phospho-Akt Ser-473 and phospho-GSK3 b/a Ser-9/21 antibodies were
from Cell Signalling (Herts, UK). Glutaraldehyde and osmium tetroxide were from
Agar Scientific (Essex, UK). BDNF was from Cambridge Bioscience (Cambridge,
UK). Bafilomycin A1 was from Acros Organics (Loughborough, UK). CT99021
was from Stratech Scientific (Suffolk, UK). Full-length rat dynamin Ixa was fused to
the fluorescent protein mCerulean at its C terminus, with the Ser774Ala mutation
generated by site-directed mutagenesis9. SypHy was generated by inserting the
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pH-sensitive green fluorescent protein, pHlourin at the second intravesicular loop
of rat synaptophysin2. All other reagents were from Sigma (Poole, UK).

Primary cell culture. In all cases, animals were killed by schedule 1 procedures in
accordance with UK Home Office Guidelines. Primary cultures of CGNs were
prepared from the cerebella of 7-day-old Sprague–Dawley rat pups of either sex45.
Cultures were used between 8–12 days in vitro. For all experiments, cultures were
removed from culture medium into incubation medium (in mM: 170 NaCl, 3.5
KCl, 0.4 KH2PO4, 20 TES (N-tris(hydroxy-methyl)-methyl-2-aminoethane-sulfo-
nic acid), 5 NaHCO3, 5 glucose, 1.2 Na2SO4, 1.2 MgCl2, 1.3 CaCl2, pH 7.4) for
10 min before commencing experiments.

Assays of protein phosphorylation status. After equilibration in incubation
medium (10 min), cultures were rested in incubation medium for a further 10 min
in the presence or absence of compounds. Cultures were then stimulated for 1 min

with 50 mM KCl (50 mM NaCl removed to maintain osmolarity) and allowed to
repolarize for 10 min in incubation medium. CGNs were immediately lysed in SDS
sample buffer (67 mM SDS, 2 mM EGTA, 9.3% glycerol, 12% b-mercaptoethanol,
bromophenol blue, 67 mM Tris, pH 7.4) after either the 10 min rest phase (Basal),
the 1 min stimulation, or after the repolarization phase. Lysate was quickly
removed and boiled for subsequent analysis by SDS–PAGE and western blotting.
Where indicated BDNF, LY294002 or K252a were included in the incubation
medium before (10 min), during and after stimulation. All primary antibodies were
used at a dilution of 1:1,000. The intensity of the signal from the phospho-dyna-
min, phospho-GSK3 and phospho-Akt blots was normalized against synaptophy-
sin on the same western blot and expressed as a percentage of basal
phosphorylation. The full version of all cropped western blots displayed in this
manuscript can be viewed in Supplementary Figs S6–S8.

Fluorescence imaging of dextran uptake. Uptake of tetramethyrhodamine-
dextran (40 kDa) was monitored in the following manner. For S1 experiments,
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CGNs were left for 10 min in incubation medium and then stimulated with a train
800 action potentials (80 Hz 10 s) in the presence of 50 mM tetramethyrhodamine-
dextran. Action potentials were delivered using a Warner Instruments field
stimulation chamber (RC-21BRFS) with parallel platinum wires (6 mm apart).
Cultures were stimulated with 1 ms pulses of 100 mA for all conditions. For the S2
experiments, CGNs were stimulated with 50 mM KCl for 1 min after a 10 min rest
in incubation medium. Cultures were then repolarized for 10 min and then
stimulated with 800 action potentials (80 Hz) in the presence of tetra-
methyrhodamine dextran. BDNF or LY294002 were present for 10 min before S1
stimulation and at all points thereafter where indicated. Dextran loading was
determined by the number of fluorescent puncta in a defined field of view for
untransfected neurons using a � 20 air objective at 550 nm excitation and
4575 nm emission on a Zeiss Axio-observer D1 inverted epi-fluorescence
microscope. The number of dextran puncta per field was quantified using FIJI
(National Institutes of Health). The images were first thresholded using the Max-
Entropy algorithm and the number of puncta (between 1–3.5 mm2) counted. The
average number of dextran puncta per field for each experiment (usually 10 fields
of view per experiment) were averaged for the same conditions and the value for
the unstimulated background was subtracted to give the corrected dextran uptake.
At least four independent experiments were performed for each experimental
condition.

Monitoring of sypHy fluorescence. CGNs were transfected with the genetic
reporter sypHy2 using lipofectamine 2000 between 4–6 days in vitro. Transfected
neurons were imaged after 72 h using a � 40 oil immersion objective and 480 nm
excitation and 4525 nm emission on a Zeiss Axio-Observer D1 inverted
epi-fluorescence microscope. After a 40 s period to establish a stable baseline,
bafilomycin A1 (200 nM) was added to the imaging chamber. The sypHy response
was recorded for a further 10 min (to visualize spontaneous SV-fusion events)
before challenging with a train of 800 action potentials delivered at 80 Hz
(to visualize evoked SV fusion). After recording for a further 3 min, incubation
medium supplemented with 50 mM NH4Cl (NaCl removed to maintain osmo-
larity) was perfused into the chamber to reveal the remaining quenched sypHy
fluorescence. BDNF (100 ng ml� 1) was added coincident with bafilomycin A1 and
remained present throughout the remainder of the experiment where indicated.
The fluorescence readout from defined regions of interest from transfected neurons
was recorded and normalized to the peak sypHy response in the presence of
NH4Cl. The peak response during both spontaneous (after 10 min) and evoked
(after 800 action potentials) was calculated as a function of the total SV pool
(revealed by NH4Cl addition).

Labelling of endocytosis pathways by HRP. Cells were processed for HRP
labelling as described below. For S1 experiments, cultures were stimulated for 2 min
with stimulation medium (50 mM KCl) supplemented with HRP (10 mg ml� 1)
after 10 min in incubation medium. For S2 experiments CGNs were treated
identically to S1 stimulated cultures (no HRP added in S1 stimulation solution) but
then repolarized in incubation medium for 10 min before a second exposure to
stimulation medium supplemented with HRP (10 mg ml� 1). Cells were fixed
immediately after either S1 or S2 in a 2% solution of glutaraldehyde in phosphate
buffered saline for 30 min at 37 �C. After washing with 100 mM Tris (pH 7.4), cells
were exposed to 0.1% diaminobenzidine and 0.2% H2O2 in 100 mM Tris. On
development of colour, they were washed with 100 mM Tris then stained with 1%
osmium tetroxide for 30 min. After washing, they were post-stained with 2% uranyl
acetate for 15 min and dehydrated using ethanol series and polypropylene oxide
and embedded using Durcupan. Samples were sectioned, mounted on grids and
viewed using a FEI Tecnai 12 transmission electron microscope (Oregon, USA).
Where indicated, cells were incubated with BDNF (100 ng ml� 1) for 10 min before
the first KCl stimulus and at all points subsequent. Nerve terminals that contained
HRP were analysed and intracellular structures that were less than 100 nm in
diameter were arbitrarily designated to be SVs, whereas larger structures were
designated to be endosomes.

Cerebellar slice electrophysiology. Sagital cerebellar slices (250 mm) were
prepared from postnatal day 16–21 male Sprague–Dawley rats in ice-cold modified
artificial CSF (ACSF) containing the following (in mM): 60 NaCl, 118 sucrose, 26
NaHCO3, 2.5 KCl, 11 glucose, 1.3 MgCl2 and 1 NaH2PO4 at pH 7.4 when bubbled
with 95% O2, 5% CO2. Slices were incubated at 30 �C in standard ACSF containing
(in mM) 119 NaCl, 2.5 CaCl2, 26 NaHCO3, 2.5 KCl, 11 glucose, 1.3 MgCl2,
1 NaH2PO4 (pH 7.4 when bubbled with 95% O2: 5% CO2) for 30 min then
maintained at room temperature. Before transfer to the recording chamber slices
were incubated for 1 h at room temperature in standard recording ACSF con-
taining combinations of either BDNF (100 ng ml� 1), LY294002 (10 mM) or
CT99021 (2 mM). For control recordings, slices were also incubated for 1 h at room
temperature in standard ACSF. Upon transfer to the recording chamber, slices
were continuously perfused (3–5 ml min� 1 at 32 �C) with the same solution in
which they were incubated. Whole-cell, voltage clamp recordings were made
from visually identified Purkinje neurons held at � 60 mV using a Multiclamp
700B amplifier (Axon Instruments) and boroscillicate patch-pipettes (3–5 MO)
filled with an internal recording solution containing (in mM) 130 caesium

methylsulphonate, 10 CsCl, 10 HEPES, 0.1 EGTA, 10 glucose, 10 sodium phos-
phocreatine, 4 Mg-ATP, 0.5 Mg-GTP and 5 QX-314 (pH 7.3 with CsOH). CT99021
(2 mM) was added to the internal solution to abolish any postsynaptic effects due to
GSK3 inhibition under the different treatments. Series resistances (typically
o15 MO) were monitored throughout and experiments were excluded when this
varied by 415%. Whole-cell currents were filtered at 5 kHz and digitized at
10 kHz. Constant voltage (4–12 V, 200ms) stimuli were delivered at 40 Hz for 15 s
(600 pulses). EPSC amplitudes were measured using the NeuroMatic function in
IGOR Pro (WaveMetrics Inc.). The amplitudes of every 10 consecutive EPSCs were
pooled then normalized to the peak amplitude of the first EPSC. Normalized EPSC
amplitudes were plotted against stimulus number to assess activity-evoked run-
down of synaptic currents. The stimulating electrode was placed in the molecular
layer 150–250 mm from the cell body towards the pia edge.

Hippocampal cell culture. Primary cultures of hippocampal neurons were pre-
pared from E17.5 mice of either sex46. All animals were killed by schedule 1
procedures as defined by Home Office Guidelines. Cultures were used between
14–15 days in vitro. For all experiments, cultures were removed from culture
medium into hippocampal imaging medium (in mM: 119 NaCl, 2.5 KCl, 2 CaCl2,

2 MgCl2, 25 HEPES, 30 glucose, 0.01 CNQX, 0.05 APV, pH 7.4) for 10 min before
commencing experiments.

Dextran uptake in transfected neurons. For dextran uptake in transfected
neurons, CGNs were transfected with DNA encoding either wild-type or S774A
mutant dynamin I tagged with mCerulean using lipofectamine 2000 after 6 days
in vitro and imaged after 8 days in vitro9. Transfected neurons were located by
viewing at 430 nm excitation (emission 4525 nm). Dextran uptake was quantified
as the number of dextran puncta per 100 mm of transfected neurite (usually five
fields of view per experiment). Neurite length was measured using the Simple
Neurite Tracer algorithm in FIJI. The unstimulated background was subtracted to
give the corrected dextran uptake. At least three independent experiments were
performed for each experimental condition.

Statistical analysis. Two sample sets were compared using a Student’s t-test,
whereas sample sets greater than two were compared using a one-way ANOVA.
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