222 research outputs found

    Set-Point Tracking MPC with Avoidance Features

    Full text link
    This work proposes a finite-horizon optimal control strategy to solve the tracking problem while providing avoidance features to the closed-loop system. Inspired by the set-point tracking model predictive control (MPC) framework, the central idea of including artificial variables into the optimal control problem is considered. This approach allows us to add avoidance features into the set-point tracking MPC strategy without losing the properties of an enlarged domain of attraction and feasibility insurances in the face of any changing reference. Besides, the artificial variables are considered together with an avoidance cost functional to establish the basis of the strategy, maintaining the recursive feasibility property in the presence of a previously unknown number of regions to be avoided. It is shown that the closed-loop system is recursively feasible and input-to-state-stable under the mild assumption that the avoidance cost is uniformly bounded over time. Finally, two numerical examples illustrate the controller behavior

    A Krill Oil Supplemented Diet Suppresses Hepatic Steatosis in High-Fat Fed Rats

    Get PDF
    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals

    Microoxygraph Device for Biosensoristic Applications

    Get PDF
    Oxygen consumption rate (OCR) is a significant parameter helpful to determine in vitro respiratory efficiency of living cells. Oxygen is an excellent oxidant and its electrocatalytic reduction on a noble metal allows accurately detecting it. By means of microfabrication technologies, handy, low-cost, and disposable chip can be attained, minimizing working volumes and improving sensitivity and response time. In this respect, here is presented a microoxygraph device (MOD), based on Clark’s electrode principle, displaying many advantageous features in comparison to other systems. This lab-on-chip platform is composed of a three-microelectrode detector equipped with a microgrooved electrochemical cell, sealed with a polymeric reaction chamber. Au working/counter electrodes and Ag/AgCl reference electrode were fabricated on a glass slide. A microchannel was realized by photoresist lift-off technique and a polydimethylsiloxane (PDMS) nanoporous film was integrated as oxygen permeable membrane (OPM) between the probe and the microreaction chamber. Electrochemical measurements showed good reproducibility and average response time, assessed by periodic injection and suction of a reducing agent. OCR measurements on 3T3 cells, subjected, in real time, to chemical stress on the respiratory chain, were able to show that this chip allows performing consistent metabolic analysis

    MPC for tracking with optimal closed-loop performance

    Get PDF
    Abstract-This paper deals with the tracking problem for constrained linear systems using a model predictive control (MPC) law. As it is well known, MPC provides a control law suitable for regulating a constrained linear system to a given target steady state. Asymptotic stability and constraint fulfilment for any finite prediction horizon is typically ensured by means of a suitable choice of the terminal cost and constraint. However, when the target operating point changes, the feasibility of the controller may be lost and the controller fails to track the reference. Recently, a novel MPC formulation has been proposed to solve this problem, ensuring feasibility and asymptotic convergence to any admissible steady state. On the other hand, this control law can not ensure the local optimality of the proposed controller, which is a desirable property of predictive controllers. In this paper, this controller is extended considering a generalized offset cost function. Sufficient conditions on this function are given to ensure the local optimality property. Besides, this novel formulation allows to consider as target operation points, states which may be not equilibrium points of the linear systems. In this case, it is proved in this paper that the proposed control law steers the system to an admissible steady state (different to the target) which is optimal with relation to the offset cost function. Thanks to the proposed generalization, the offset cost function could be chosen according to some steady performance criterium. Therefore, the proposed controller for tracking achieves an optimal closed-loop performance during the transient as well as an optimal steady state in case of not admissible target. These properties are illustrated in an example

    Centrifugation force and time alter CASA parameters and oxidative status of cryopreserved stallion sperm

    Get PDF
    Conventional sperm selection techniques used in ARTs rely on centrifugation steps. To date, the different studies reported on the effects of centrifugation on stallion sperm motility provided contrasting results and do not include effects on mitochondrial functionality and different oxidative parameters. The effects of different centrifugation protocols (300 ×g for 5’, 300 ×g for 10’, 1500 ×g for 5’ and 1500 ×g for 10’ vs no centrifugation) on motility and oxidative status in cryopreserved stallion sperm, were analyzed. After centrifugation, almost all motility parameters were significantly altered, as observed by computer-assisted sperm analysis. A polarographic assay of oxygen consumption showed a progressive decrease in mitochondria respiration from the gentlest to the strongest protocol. By laser scanning confocal microscopy, significant reduction of mitochondrial membrane potential, at any tested protocol, and time-dependent effects, at the same centrifugal force, were found. Increased DNA fragmentation index at any tested protocol and time-dependent effects at the same centrifugal force were found, whereas increased protein carbonylation was observed only at the strongest centrifugal force. These results provide more comprehensive understandings on centrifugation-induced effects on cryopreserved stallion sperm and suggest that, even at a weak force for a short time, centrifugation impairs different aspects of equine sperm metabolism and functionality

    Distributed predictive control with minimization of mutual disturbances

    Get PDF
    In this paper, a distributed model predictive control scheme is proposed for linear, time-invariant dynamically coupled systems. Uniquely, controllers optimize state and input constraint sets, and exchange information about these—rather than planned state and control trajectories—in order to coordinate actions and reduce the effects of the mutual disturbances induced via dynamic coupling. Mutual disturbance rejection is by means of the tube-based model predictive control approach, with tubes optimized and terminal sets reconfigured on-line in response to the changing disturbance sets. Feasibility and exponential stability are guaranteed under provided sufficient conditions on non-increase of the constraint set parameters

    Aneurysms and pseudoaneurysms in dialysis access

    Get PDF
    Aneurysms are a common and often difficult complication seen with arteriovenous vascular access for haemodialysis. The purpose of this narrative review is to define and describe the scale of the problem and suggested therapeutic strategies. A narrative review of the published literature illustrated by individual cases is presented with the aim of summarising the relevant literature. The definitions of aneurysm are inconsistent throughout the literature and therefore systematic review is impossible. They vary from qualitative descriptions to quantitative definitions using absolute size, relative size and also size plus characteristics. The incidence and aetiology are also ill defined but separation into true aneurysms and false, or pseudoaneurysms may be helpful in planning treatment, which may be conservative, surgical or radiological. The lack of useful definitions and classification along with the multitude of management strategies proposed make firm evidence based conclusions difficult to draw. Further robust well designed studies are required to define best practice for this common problem
    • …
    corecore