2,041 research outputs found
Design of a Hydrogen Gas Generator Using Aqueous Sodium Borohydride Solution for Portable Fuel Cell Applications
Tweaking synchronization by connectivity modifications
ACKNOWLEDGMENTS The authors wish to thank the Nesin Foundation for an amazing working group activity in Nesin Math Village, and we wish to thank Tiago Pereira for fruitful discussions. P.S. and J.K. acknowledge gratefully the support of BMBF, CoNDyNet, FK. 03SF0472A. T.P. acknowledges FAPESP (No. 2012/22160-7 and No. 2015/02486-3) and IRTG 1740. D.E. acknowledge support by the Leibniz Association (WGL) under Grant No. SAW-2013-IZW-2542.Peer reviewedPublisher PD
Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities
The minimum variance distortionless response beamformer for damage identification using modal curvatures
This study presents a damage identification procedure in beams based on the use of
beamforming algorithms, which are mostly utilized in inverse problems of source identification
and image reconstruction. We choose the modal curvatures as observed quantities and compare
the performance of the Bartlett beamformer, minimum variance distortionless response (MVDR)
processor, and of a conventional objective function based on the modal curvatures. By means of a
set of experiments, we show that the MVDR processor can overcome some of the difficulties
encountered with other estimators, especially in cases of slight damage, or damage located between two sensors
Investigation into the use of histone deacetylase inhibitor MS-275 as a topical agent for the prevention and treatment of cutaneous squamous cell carcinoma in an SKH-1 hairless mouse model
<div><p>Cutaneous squamous cell carcinomas are a common form of highly mutated keratinocyte skin cancers that are of particular concern in immunocompromised patients. Here we report on the efficacy of topically applied MS-275, a clinically used histone deacetylase inhibitor, for the treatment and management of this disease. At 2 mg/kg, MS-275 significantly decreased tumor burden in an SKH-1 hairless mouse model of UVB radiation-induced skin carcinogenesis. MS-275 was cell permeable as a topical formulation and induced histone acetylation changes in mouse tumor tissue. MS-275 was also effective at inhibiting the proliferation of patient derived cutaneous squamous cell carcinoma lines and was particularly potent toward cells isolated from a regional metastasis on an immunocompromised individual. Our findings support the use of alternative routes of administration for histone deacetylase inhibitors in the treatment of high-risk squamous cell carcinoma which may ultimately lead to more precise delivery and reduced systemic toxicity.</p></div
Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots
Cataloged from PDF version of article.We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm x 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines
Systematic study of trace radioactive impurities in candidate construction materials for EXO-200
The Enriched Xenon Observatory (EXO) will search for double beta decays of
136Xe. We report the results of a systematic study of trace concentrations of
radioactive impurities in a wide range of raw materials and finished parts
considered for use in the construction of EXO-200, the first stage of the EXO
experimental program. Analysis techniques employed, and described here, include
direct gamma counting, alpha counting, neutron activation analysis, and
high-sensitivity mass spectrometry.Comment: 32 pages, 6 figures. Expanded introduction, added missing table
entry. Accepted for publication in Nucl. Instrum. Meth.
- …
