145 research outputs found

    The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle.

    Get PDF
    Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen

    Drying techniques differentially affect bark beetle weight change

    Get PDF
    None

    Resource availability and repeated defoliation mediate compensatory growth in trembling aspen (Populus tremuloides) seedlings

    Get PDF
    Plant ecologists have debated the mechanisms used by plants to cope with the impact of herbivore damage. While plant resistance mechanisms have received much attention, plant compensatory growth as a type of plant tolerance mechanisms has been less studied. We conducted a greenhouse experiment to evaluate compensatory growth for trembling aspen (Populus tremuloides) seedlings under varying intensities and frequencies of simulated defoliation, with or without nutrient enriched media. For the purpose of this study, changes in biomass production and non-structural carbohydrate concentrations (NSC) of roots and leaves were considered compensatory responses. All defoliated seedlings showed biomass accumulation under low defoliation intensity and frequency, regardless of resource availability; however, as defoliation intensity and frequency increased, compensatory growth of seedlings was altered depending on resource availability. Seedlings in a resource-rich environment showed complete compensation, in contrast responses ranged from undercompensation to complete compensation in a resource-limited environment. Furthermore, at the highest defoliation intensity and frequency, NSC concentrations in leaves and roots were similar between defoliated and non-defoliated seedlings in a resource-rich environment; in contrast, defoliated seedlings with limited resources sustained the most biomass loss, had lower amounts of stored NSC. Using these results, we developed a new predictive framework incorporating the interactions between frequency and intensity of defoliation and resource availability as modulators of plant compensatory responses

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure

    Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program

    Get PDF
    Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.Instituto de Recursos BiológicosFil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Recursos Biológicos; ArgentinaFil: Cappa, Eduardo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Klutsch, Jenifer G. University of Alberta; Department of Renewable Resources; CanadaFil: Sebastian-Azcona, Jaime. University of Alberta; Department of Renewable Resources; CanadaFil: Ratchiffe, Blaise. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Xiaojing, Wei. University of Alberta; Department of Renewable Resources; CanadaFil: Da Ros, Letitia. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Yang, Liu. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; CanadáFil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados UnidosFil: Benowicz, Andy. Alberta Agriculture and Forestry. Forest Stewardship and Trade Branch; CanadáFil: Sadoway, Shane. Blue Ridge Lumber Inc.; CanadáFil: Mansfield, Shawn D. University of British Columbia. Faculty of Forestry. Department of Wood Science; CanadáFil: Erbilgin, Nadir. University of Alberta; Department of Renewable Resources; CanadaFil: Thomas, Barb R. University of Alberta; Department of Renewable Resources; CanadaFil: El-Kassaby, Yousry A. University of British Columbia. Faculty of Forestry. Department of Forest and Conservation Sciences; Canad

    High-Resolution Association Mapping of Atherosclerosis Loci in Mice

    Get PDF
    To fine map previously identified quantitative trait loci (QTL) affecting atherosclerosis in mice using association analysis

    Trees Wanted—Dead or Alive! Host Selection and Population Dynamics in Tree-Killing Bark Beetles

    Get PDF
    Bark beetles (Coleoptera: Curculionidae, Scolytinae) feed and breed in dead or severely weakened host trees. When their population densities are high, some species aggregate on healthy host trees so that their defences may be exhausted and the inner bark successfully colonized, killing the tree in the process. Here we investigate under what conditions participating with unrelated conspecifics in risky mass attacks on living trees is an adaptive strategy, and what this can tell us about bark beetle outbreak dynamics. We find that the outcome of individual host selection may deviate from the ideal free distribution in a way that facilitates the emergence of tree-killing (aggressive) behavior, and that any heritability on traits governing aggressiveness seems likely to exist in a state of flux or cycles consistent with variability observed in natural populations. This may have implications for how economically and ecologically important species respond to environmental changes in climate and landscape (forest) structure. The population dynamics emerging from individual behavior are complex, capable of switching between “endemic” and “epidemic” regimes spontaneously or following changes in host availability or resistance. Model predictions are compared to empirical observations, and we identify some factors determining the occurrence and self-limitation of epidemics

    Decoupling of height growth and drought or pest resistance tradeoffs is revealed through multiple common-garden experiments of lodgepole pine

    Get PDF
    14 páginas.- 4 figuras.- 1 tabla.- 101 referencias.- Supplementary material is available online at Evolution (https://academic.oup.com/evolut/qpad004) . A correction has been published: Evolution, Volume 77, Issue 4, 1 April 2023, Page 1174, https://doi.org/10.1093/evolut/qpad030 Issue Section: Correction This is a correction to: Yang Liu, Nadir Erbilgin, Eduardo Pablo Cappa, Charles Chen, Blaise Ratcliffe, Xiaojing Wei, Jennifer G Klutsch, Aziz Ullah, Jaime Sebastian Azcona, Barb R Thomas, Yousry A El-Kassaby, Decoupling of height growth and drought or pest resistance tradeoffs is revealed through multiple common-garden experiments of lodgepole pine, Evolution, 2023; qpad004, https://doi.org/10.1093/evolut/qpad004 In the originally published version of this manuscript, the images for Figures 3 and 4 were erroneously transposed. The images are now in their correct position to align with their respective legends. The Funding section was erroneously removed, and its details situated at the end of the Acknowledgements section. Funding details are now situated within the replaced Funding section. The publisher would like to apologise for the errors introduced here. The errors have been corrected in the article online.The environment could alter growth and resistance tradeoffs in plants by affecting the ratio of resource allocation to various competing traits. Yet, how and why functional tradeoffs change over time and space is poorly understood particularly in long-lived conifer species. By establishing four common-garden test sites for five lodgepole pine populations in western Canada, combined with genomic sequencing, we revealed the decoupling pattern and genetic underpinnings of tradeoffs between height growth, drought resistance based on δ13C and dendrochronology, and metrics of pest resistance based on pest suitability ratings. Height and δ13C correlation displayed a gradient change in magnitude and/or direction along warm-to-cold test sites. All cold test sites across populations showed a positive height and δ13C relationship. However, we did not observe such a clinal correlation pattern between height or δ13C and pest suitability. Further, we found that the study populations exhibiting functional tradeoffs or synergies to various degrees in test sites were driven by non-adaptive evolutionary processes rather than adaptive evolution or plasticity. Finally, we found positive genetic relationships between height and drought or pest resistance metrics and probed five loci showing potential genetic tradeoffs between northernmost and the other populations. Our findings have implications for deciphering the ecological, evolutionary, and genetic bases of the decoupling of functional tradeoffs due to environmental change.This work was funded by Genome Canada, Genome Alberta through Alberta Economic Trade and evelopment, Genome British Columbia, the University of Alberta, the University of Calgary, the University of Cambridge, and the Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture (CE200100015).Peer reviewe
    corecore