45 research outputs found

    An evaluation of the intuitiveness of the PGA modeling language notation

    Get PDF
    The Process-Goal Alignment (PGA) modeling method is a domain-specific modeling language that aims to achieve strategic fit of the business strategy with the internal infrastructure and processes. To ensure the acceptance and correct understanding of PGA models by business-oriented end-users, an intuitively understandable notation is of paramount importance. However, the current PGA notation was not formally tested up to now. In the paper at hand, we apply an evaluation technique for testing the intuitiveness of domain-specific modeling languages to bridge that research gap. Based on an analysis of the tasks, we propose improvements to six elements of the initial PGA notation. Our research contributes a comprehensive description of the empirical modeling language evaluation, which enables the reproducibility of the evaluation procedure by the conceptual modeling community

    Dopamine D3 receptor dysfunction prevents anti-nociceptive effects of morphine in the spinal cord

    Get PDF
    Abstract Dopamine (DA) modulates spinal reflexes, including nociceptive reflexes, in part via the D3 receptor subtype. We have previously shown that mice lacking the functional D3 receptor (D3KO) exhibit decreased paw withdrawal latencies from painful thermal stimuli. Altering the DA system in the CNS, including D1 and D3 receptor systems, reduces the ability of opioids to provide analgesia. Here, we tested if the increased pain sensitivity in D3KO might result from a modified μ-opioid receptor (MOR) function at the spinal cord level. As D1 and D3 receptor subtypes have competing cellular effects and can form heterodimers, we tested if the changes in MOR function may be mediated in D3KO through the functionally intact D1 receptor system. We assessed thermal paw withdrawal latencies in D3KO and wild type (WT) mice before and after systemic treatment with morphine, determined MOR and phosphorylated MOR (p-MOR) protein expression levels in lumbar spinal cords, and tested the functional effects of DA and MOR receptor agonists in the isolated spinal cord. In vivo, a single morphine administration (2 mg/kg) increased withdrawal latencies in WT but not D3KO, and these differential effects were mimicked in vitro, where morphine modulated spinal reflex amplitudes (SRAs) in WT but not D3KO. Total MOR protein expression levels were similar between WT and D3KO, but the ratio of pMOR/total MOR was higher in D3KO. Blocking D3 receptors in the isolated WT cord precluded morphine's inhibitory effects observed under control conditions. Lastly, we observed an increase in D1 receptor protein expression in the lumbar spinal cord of D3KO. Our data suggest that the D3 receptor modulates the MOR system in the spinal cord, and that a dysfunction of the D3 receptor can induce a morphine-resistant state. We propose that the D3KO mouse may serve as a model to study the onset of morphine resistance at the spinal cord level, the primary processing site of the nociceptive pathway

    A family of Type VI secretion system effector proteins that form ion-selective pores

    Get PDF
    This work was supported by the Wellcome Trust (104556/Z/14/Z, Senior Fellowship in Basic Biomedical Science to S.J.C.; 097818/Z/11/B and 109118/Z/15/Z, PhD studentships to University of Dundee), the MRC (MR/K000111X/1, New Investigator Research Grant to S.J.C.) and the Royal Society of Edinburgh (Biomedical Personal Research Fellowship to S.J.P.). We thank Roland Freudl for the gift of anti-OmpA antibody; Adam Ostrowski for construction of strains AO07 and AO08; Gal Horesh, Amy Dorward and Gavin Robertson for expert assistance; the Flow Cytometry and Cell Sorting Facility at the University of Dundee; and the Dundee Imaging Facility (supported by Wellcome Trust [097945/B/11/Z] and MRC [MR/K015869/1]) awards).Type VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores. Ssp6 inhibits bacterial growth by causing depolarisation of the inner membrane in intoxicated cells, together with increased outer membrane permeability. Reconstruction of Ssp6 activity in vitro demonstrates that it forms cation-selective pores. A survey of bacterial genomes reveals that genes encoding Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 and similar proteins represent a new family of T6SS-delivered anti-bacterial effectors.Publisher PDFPeer reviewe

    Deletion of the gene encoding G0/G 1 switch protein 2 (G0s2) alleviates high-fat-diet-induced weight gain and insulin resistance, and promotes browning of white adipose tissue in mice

    No full text
    AIMS/HYPOTHESIS: Obesity is a global epidemic resulting from increased energy intake, which alters energy homeostasis and results in an imbalance in fat storage and breakdown. G0/G1 switch gene 2 (G0s2) has been recently characterised in vitro as an inhibitor of adipose triglyceride lipase (ATGL), the rate-limiting step in fat catabolism. In the current study we aim to functionally characterise G0s2 within the physiological context of a mouse model. METHODS: We generated a mouse model in which G0s2 was deleted. The homozygous G0s2 knockout (G0s2 (-/-)) mice were studied over a period of 22 weeks. Metabolic variables were measured including body weight and body composition, food intake, glucose and insulin tolerance tests, energy metabolism and thermogenesis. RESULTS: We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo. G0s2 (-/-) mice are lean, resistant to weight gain induced by a high-fat diet and are glucose tolerant and insulin sensitive. The white adipose tissue of G0s2 (-/-) mice has enhanced lipase activity and adipocytes showed enhanced stimulated lipolysis. Energy metabolism in the G0s2 (-/-) mice is shifted towards enhanced lipid metabolism and increased thermogenesis. G0s2 (-/-) mice showed enhanced cold tolerance and increased expression of thermoregulatory and oxidation genes within white adipose tissue, suggesting enhanced \u27browning\u27 of the white adipose tissue. CONCLUSIONS/INTERPRETATION: Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance

    The Iron- and Temperature-Regulated cjrBC Genes of Shigella and Enteroinvasive Escherichia coli Strains Code for Colicin Js Uptake

    No full text
    A cosmid library of DNA from colicin Js-sensitive enteroinvasive Escherichia coli (EIEC) strain O164 was made in colicin Js-resistant strain E. coli VCS257, and colicin Js-sensitive clones were identified. Sensitivity to colicin Js was associated with the carriage of a three-gene operon upstream of and partially overlapping senB. The open reading frames were designated cjrABC (for colicin Js receptor), coding for proteins of 291, 258, and 753 amino acids, respectively. Tn7 insertions in any of them led to complete resistance to colicin Js. A near-consensus Fur box was found upstream of cjrA, suggesting regulation of the cjr operon by iron levels. CjrA protein was homologous to iron-regulated Pseudomonas aeruginosa protein PhuW, whose function is unknown; CjrB was homologous to the TonB protein from Pseudomonas putida; and CjrC was homologous to a putative outer membrane siderophore receptor from Campylobacter jejuni. Cloning experiments showed that the cjrB and cjrC genes are sufficient for colicin Js sensitivity. Uptake of colicin Js into sensitive bacteria was dependent on the ExbB protein but not on the E. coli K-12 TonB and TolA, -B, and -Q proteins. Sensitivity to colicin Js is positively regulated by temperature via the VirB protein and negatively controlled by the iron source through the Fur protein. Among EIEC strains, two types of colicin Js-sensitive phenotypes were identified that differed in sensitivity to colicin Js by 1 order of magnitude. The difference in sensitivity to colicin Js is not due to differences between the sequences of the CjrB and CjrC proteins
    corecore