36 research outputs found

    Trends in cyclones in the high-latitude North Atlantic during 1979-2016

    Get PDF
    We report an increase in winter (DJF) cyclone densities in the areas around Svalbard and in northwestern Barents Sea and a decrease in cyclone densities in southeastern Barents Sea during 1979-2016. Despite high interannual variability, the trends are significant at the 90% confidence level. The changes appear as a result of a shift into a more meridional winter storm track in the high-latitude North Atlantic, associated with a positive trend in the Scandinavian Pattern. A significant decrease in the Brunt-Vaisala frequency east of Svalbard and a significant increase in the Eady Growth Rate north of Svalbard indicate increased baroclinicity, favouring enhanced cyclone activity in these regions. For the first time, we apply composite analysis to explicitly address regional consequences of these wintertime changes in the high-latitude North Atlantic. We find a tendency toward a warmer and more moist atmospheric state in the Barents Sea and over Svalbard with increased cyclone activity around Svalbard.Peer reviewe

    On the use of reanalysis data for downscaling

    Get PDF
    In this study, a worldwide overview on the expected sensitivity of downscaling studies to reanalysis choice is provided. To this end, the similarity of middle-tropospheric variables—which are important for the development of both dynamical and statistical downscaling schemes—from 40-yr European Centre for Medium- Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalysis data on a daily time scale is assessed. For estimating the distributional similarity, two comparable scores are used: the twosample Kolmogorov–Smirnov statistic and the probability density function (PDF) score. In addition, the similarity of the day-to-day sequences is evaluated with the Pearson correlation coefficient. As the most important results demonstrated, the PDF score is found to be inappropriate if the underlying data follow a mixed distribution. By providing global similarity maps for each variable under study, regions where reanalysis data should not assumed to be ‘‘perfect’’ are detected. In contrast to the geopotential and temperature, significant distributional dissimilarities for specific humidity are found in almost every region of the world. Moreover, for the latter these differences not only occur in the mean, but also in higher-order moments. However, when considering standardized anomalies, distributional and serial dissimilarities are negligible overmost extratropical land areas. Since transformed reanalysis data are not appropriate for regional climate models—in opposition to statistical approaches—their results are expected to be more sensitive to reanalysis choice

    Modulation of the PDO

    No full text

    The Arctic and Polar cells act on the Arctic sea ice variation

    No full text
    The Arctic sea ice has undergone a substantial long-term decline with superimposed interannual sea ice minimum (SIM) events over the last decades. This study focuses on the relationship between atmospheric circulation and the SIM events in the Arctic region. Four reanalysis products and simulations of one climate model are first analysed to confirm the existence of the Arctic cell, a meridional circulation cell to the north of 80°N, by visualising through the mean streamline and mean mass stream function in the Northern Hemisphere. Dynamical analyses of zonally averaged stationary eddy heat and momentum fluxes as well as the global precipitation rate data further confirm its existence. Finally, we found that the change in the Arctic sea ice concentration lags the variations of the descending air flow intensity associated with the Polar and Arctic cells, by about 2 months for the climatic annual cycle and about 10 months for the interannual anomaly. Five Arctic SIM events during the last three decades support this relationship. These results have implications for understanding the relationship between atmospheric circulation and sea-ice variations, and for predicting the Arctic sea ice changes
    corecore