214 research outputs found

    Creep motion of a model frictional system

    Get PDF
    We report on the dynamics of a model frictional system submitted to minute external perturbations. The system consists of a chain of sliders connected through elastic springs that rest on an incline. By introducing cyclic expansions and contractions of the springs we observe a reptation of the chain. We account for the average reptation velocity theoretically. The velocity of small systems exhibits a series of plateaus as a function of the incline angle. Due to elastic e ects, there exists a critical amplitude below which the reptation is expected to cease. However, rather than a full stop of the creep, we observe in numerical simulations a transition between a continuous-creep and an irregular-creep regime when the critical amplitude is approached. The latter transition is reminiscent of the transition between the continuous and the irregular compaction of granular matter submitted to periodic temperature changes

    Bringing sensation to prosthetic hands—chronic assessment of implanted thin-film electrodes in humans

    Get PDF
    Direct stimulation of peripheral nerves with implantable electrodes successfully provided sensory feedback to amputees while using hand prostheses. Longevity of the electrodes is key to success, which we have improved for the polyimide-based transverse intrafascicular multichannel electrode (TIME). The TIMEs were implanted in the median and ulnar nerves of three trans-radial amputees for up to six months. We present a comprehensive assessment of the electrical properties of the thin-film metallization as well as material status post explantationem. The TIMEs stayed within the electrochemical safe limits while enabling consistent and precise amplitude modulation. This lead to a reliable performance in terms of eliciting sensation. No signs of corrosion or morphological change to the thin-film metallization of the probes was observed by means of electrochemical and optical analysis. The presented longevity demonstrates that thin-film electrodes are applicable in permanent implant systems

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Interplay between elastic instabilities and shear-banding: three categories of Taylor–Couette flows and beyond

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatiotemporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the shear-banding flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. The criterion for purely elastic Taylor–Couette instability adapted to shear-banding flows suggested three categories of shear-banding depending on their stability. In the present study, we report on a large set of experimental data which demonstrates the existence of the three categories of shear-banding flows in various surfactant solutions. Consistent with theoretical predictions, increases in the surfactant concentration or in the curvature of the geometry destabilize the flow, whereas an increase in temperature stabilizes the flow. However, experiments also exhibit some interesting behaviors going beyond the purely elastic instability criterion.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling

    Get PDF
    Subjects with type-2 diabetes are typically obese with dysfunctional adipose tissue (AT). Glucagon-like peptide-1 (GLP-1) analogues are routinely used to improve glycaemia. Although, they also aid weight loss that improves AT function, their direct effect on AT function is unclear. To explore GLP-1 analogues’ influence on human AT’s cytokine and extracellular matrix (ECM) regulation, we therefore obtained and treated omental (OMAT) and subcutaneous (SCAT) AT samples with Exendin-4, an agonist of the GLP-1 receptor (GLP-1R)Final publishe
    corecore