1,150 research outputs found
Non-invasive acquisition of fetal ECG from the maternal xyphoid process: a feasibility study in pregnant sheep and a call for open data sets
Objective: The utility of fetal heart rate (FHR) monitoring can only be
achieved with an acquisition sampling rate that preserves the underlying
physiological information on the millisecond time scale (1000 Hz rather than 4
Hz). For such acquisition, fetal ECG (fECG) is required, rather than the
ultrasound to derive FHR. We tested one recently developed algorithm, SAVER,
and two widely applied algorithms to extract fECG from a single channel
maternal ECG signal recorded over the xyphoid process rather than the routine
abdominal signal. Approach: At 126dG, ECG was attached to near-term ewe and
fetal shoulders, manubrium and xyphoid processes (n=12). FECG served as the
ground-truth to which the fetal ECG signal extracted from the
simultaneously-acquired maternal ECG was compared. All fetuses were in good
health during surgery (pH 7.29+/-0.03, pO2 33.2+/-8.4, pCO2 56.0+/-7.8, O2Sat
78.3+/-7.6, lactate 2.8+/-0.6, BE -0.3+/-2.4). Main result: In all animals,
single lead fECG extraction algorithm could not extract fECG from the maternal
ECG signal over the xyphoid process with the F1 less than 50%. Significance:
The applied fECG extraction algorithms might be unsuitable for the maternal ECG
signal over the xyphoid process, or the latter does not contain strong enough
fECG signal, although the lead is near the mother's abdomen. Fetal sheep model
is widely used to mimic various fetal conditions, yet ECG recordings in a
public data set form are not available to test the predictive ability of fECG
and FHR. We are making this data set openly available to other researchers to
foster non-invasive fECG acquisition in this animal model
A Cenozoic-style scenario for the end-Ordovician glaciation
The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest δ13C excursion occurs during final deglaciation, not at the glacial apex
10 Years of Environmental Change on the Slopes of Mount Kilimanjaro and Its Associated Shift in Malaria Vector Distributions.
INTRODUCTION: Malaria prevalence has declined in the Kilimanjaro region of Tanzania over the past 10 years, particularly at lower altitudes. While this decline has been related to the scale-up of long-lasting insecticidal nets to achieve universal coverage targets, it has also been attributed to changes in environmental factors that are important for enabling and sustaining malaria transmission. OBJECTIVES: Herein, we apply spatial analytical approaches to investigate the impact of environmental and demographic changes, including changes in temperature, precipitation, land cover, and population density, on the range of the major malaria vector species Anopheles arabiensis in two districts of Tanzania, situated on the southern slope of Mount Kilimanjaro. These models are used to identify environmental changes that have occurred over a 10-year period and highlight the implications for malaria transmission in this highland region. METHODS: Entomological data were collected from the Hai and Lower Moshi districts of Tanzania in 2001-2004 and 2014-2015. Vector occurrence data were applied alongside satellite remote sensing indices of climate and land cover, and gridded population data, to develop species distribution models for An. arabiensis for the 2004 and 2014 periods using maximum entropy. Models were compared to assess the relative contribution of different environmental and demographic factors to observed trends in vector species distribution in lowland and highland areas. RESULTS: Changes in land cover were observed in addition to increased population densities, increased warm season temperature, and decreased wetness at low altitudes. The predicted area and extent of suitable habitat for An. arabiensis declined across the study area over the 10-year period, with notable contraction at lower altitudes, while species range in higher altitude zones expanded. Importantly, deforestation and warmer temperatures at higher altitudes may have created stable areas of suitable vector habitat in the highlands capable of sustaining malaria transmission. CONCLUSION: We show that environmental changes have had an important influence on the distribution of malaria vector species in a highland area of northern Tanzania. Highland areas may be at continued risk for sporadic malaria outbreaks despite the overall range contraction of principal vector species at lower altitudes, where malaria transmission remains at low intensity
A novel knowledge repository to support industrial symbiosis
The development of tools and methods supporting the identification of Industrial Symbiosis opportunities is of utmost importance to unlock its full potential. Knowledge repositories have proven to be powerful tools in this sense, but often fail mainly due to poor contextualization of information and lack of general applicability (out of the boundaries of specific areas or projects). In this work, a novel approach to the design of knowledge repositories for Industrial Symbiosis is presented, based on the inclusion and categorization of tacit knowledge as well as on the combination of mimicking and input-output matching approaches. The results of a first usability test of the proposed tool are also illustrated
Inertial-space disturbance rejection for space-based manipulators
The implementation of a disturbance rejection controller for a 6-DOF PUMA manipulator mounted on a 3-DOF platform was described. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Experimental results are presented for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities. Robotic manipulators were proposed as a means of reducing the amount of extra vehicular activity time required for space station assembly and maintenance. The proposed scenario involves a robotic manipulator attached to some mobile platform, such as a spacecraft, satellite, or the space station itself. Disturbances in the platform position and attitude may prevent the manipulator from successfully completing the task. The possibility of using the manipulator to compensate for platform disturbances was explored. The problem of controlling a robotic manipulator on a mobile platform has received considerable attention in the past few years. Joshi and Desrochers designed a nonlinear feedback control law to carry out tasks (with respect to the robot base frame) in the presence of roll, pitch and yaw disturbances in the platform axes. Dubowsky, Vance, and Torres proposed a time-optimal planning algorithm for a robotic manipulator mounted on a spacecraft, subject to saturation limits in the attitude control reaction jets. Papadopoulos and Dubowsky developed a general framework for analyzing the control of free-floating space manipulator systems. Most recently, Torres and Dubowsky have presented a technique called the enhanced disturbance map to find manipulator trajectories that reduce the effect of disturbances in the spacecraft position and attitude. One common assumption in the literature is that the disturbance signal is exactly known. If this is the case, then the end-effector location can be calculated without relying on direct end-point sensing. However, this assumption is invalid if there is a significant delay in the platform position and attitude measurements, or if the kinematics of the platform are not well known, or if the platform is a non-rigid structure. In the more likely case that only the nominal platform location and upper bound on the disturbance signal are known, direct end-point sensing is needed to measure the end-effector location
Material reutilization cycles across industries and production lines
The concept of Industrial Symbiosis aims at organizing industrial activity like a living ecosystem where the by-product outputs of one process are used as valuable raw material input for another process. A significant method for the systematic planning of Industrial Symbiosis is found in input–output matching, which is aimed at collecting material input and output data from companies, and using the results to establish links across industries. The collection and classification of data is crucial to the development of synergies in Industrial Symbiosis. Public and private institutions involved in the planning and development of Industrial Symbiosis rely however on manual interpretation of information in the course of creating synergies. Yet, the evaluation and analysis of these data sources on Industrial Symbiosis topics is a tall order. Within this chapter a method is presented which describes value creation activities according to the Value Creation Module (VCM). They are assessed before they are integrated in Value Creation Networks (VCNs), where alternative uses for by-products are proposed by means of iterative input-output matching of selected value creation factors
Factors influencing the ownership and utilization of long-lasting insecticidal nets for malaria prevention in Ethiopia
Background
Utilization of long-lasting insecticidal nets (LLINs) is regarded as key malaria prevention and control strategy. However, studies have reported a large gap in terms of both ownership and utilization particularly in the sub-Saharan Africa (SSA). With continual efforts to improve the use of LLIN and to progress malaria elimination, examining the factors influencing the ownership and usage of LLIN is of high importance. Therefore, the current study was conducted to examine the level of ownership and use of LLIN along with identification of associated factors at household level.
Methods
A cross-sectional study was conducted in Mirab Abaya District, Southern Ethiopia in June and July 2014. A total of 540 households, with an estimated 2690 members, were selected in four kebeles of the district known to have high incidence of malaria. Trained data collectors interviewed household heads to collect information on the knowledge, ownership and utilization of LLINs, which was complemented by direct observation on the conditions and use of the nets through house-to-house visit. Bivariate and multivariable logistic regression analyses were used to determine factors associated to LLIN use.
Results
Of 540 households intended to be included in the survey, 507 responded to the study (94.24% response rate), covering the homes of 2759 people. More than 58% of the households had family size >5 (the regional average), and 60.2% of them had at least one child below the age of 5 years. The ownership of at least one LLIN among households surveyed was 89.9%, and using at least one LLIN during the night prior to the survey among net owners was 85.1% (n = 456). Only 36.7% (186) mentioned at least as the mean of correct scores of all participants for 14 possible malaria symptoms and 32.7% (166) knew at least as the mean of correct scores of all participants for possible preventive methods. Over 30% of nets owned by the households were out of use. After controlling for confounding factors, having two or more sleeping places (adjusted odds ratio [aOR] = 2.58, 95% CI 1.17, 5.73), knowledge that LLIN prevents malaria (aOR = 2.51, 95% CI 1.17, 5.37), the presence of hanging bed nets (aOR = 19.24, 95% CI 9.24, 40.07) and walls of the house plastered or painted >12 months ago (aOR = 0.09, 95% CI 0.01, 0.71) were important predictors of LLIN utilization.
Conclusions
This study found a higher proportion of LLIN ownership and utilization by households than had previously been found in similar studies in Ethiopia, and in many studies in SSA. However, poor knowledge of the transmission mechanisms and the symptoms of malaria, and vector control measures to prevent malaria were evident. Moderate proportions of nets were found to be out of use or in poor repair. Efforts should be in place to maintain the current rate of utilization of LLIN in the district and improve on the identified gaps in order to support the elimination of malaria
A study of the aliasing effect on gravitational potential coefficients as determined from gravity data
Prepared for Air Force Cambridge Research Laboratories, Air Force Systems Command, United States Air Force, Bedford, Massachusetts: Contract No. F19628-69-C-0127, Project No. 7600, Task No. 760002, 04The computation of potential coefficients from gravity anomalies has been investigated from two points of view. The first area of investigation concerned the computation of anomalies from a defined set of potential coefficients using evaluations through an integrated procedure and through evaluation at the center of blocks on the surface of the sphere. These anomalies were then substituted into standard summation formulas to test the recovery of the original coefficients. It was found that the original coefficients were recovered better when a center point evaluation was made as opposed to the integrated approach. The second area of study concerned the aliasing effect caused by having gravity data of unequal standard errors in a weighted least squares adjustment. It was found that the aliasing effect alters all potential coefficients of a least squares solution. Using the coefficients found from solutions affected by the aliasing effect, it was also found that the higher degree anomaly information was not absorbed in the lower degree terms
Aerodynamic study of a tricycle wheel subsystem for drag reduction
This paper deals with a computational fluid dynamics (CFD) and experimental drag analysis on an isolated rotating wheel subsystem (including its accessories: tire, suspension, A-arms, and fender) of a motor tricycle vehicle with two wheels in front. The main goal of the present work is to study the effect of the fender on the wheel subsystem drag and its optimization. The Star CCM+ commercial code was used for the numerical simulations. Different flow conditions were simulated and some results were validated by comparison to wind tunnel experimental results. To perform drag optimization, several aerodynamic fender shapes were designed and simulated as part of the subsystem. A drastic drag reduction up to 30.6% compared to the original wheel subsystem was achieved through numerical simulations
- …
