207 research outputs found

    Quantitative analysis of multi-spectral fundus images

    Get PDF
    We have developed a new technique for extracting histological parameters from multi-spectral images of the ocular fundus. The new method uses a Monte Carlo simulation of the reflectance of the fundus to model how the spectral reflectance of the tissue varies with differing tissue histology. The model is parameterised by the concentrations of the five main absorbers found in the fundus: retinal haemoglobins, choroidal haemoglobins, choroidal melanin, RPE melanin and macular pigment. These parameters are shown to give rise to distinct variations in the tissue colouration. We use the results of the Monte Carlo simulations to construct an inverse model which maps tissue colouration onto the model parameters. This allows the concentration and distribution of the five main absorbers to be determined from suitable multi-spectral images. We propose the use of "image quotients" to allow this information to be extracted from uncalibrated image data. The filters used to acquire the images are selected to ensure a one-to-one mapping between model parameters and image quotients. To recover five model parameters uniquely, images must be acquired in six distinct spectral bands. Theoretical investigations suggest that retinal haemoglobins and macular pigment can be recovered with RMS errors of less than 10%. We present parametric maps showing the variation of these parameters across the posterior pole of the fundus. The results are in agreement with known tissue histology for normal healthy subjects. We also present an early result which suggests that, with further development, the technique could be used to successfully detect retinal haemorrhages

    Bilateral macular hole formation secondary to sclopetaria caused by shockwaves transmitted by a posterior vector: case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sclopetaria is a rare ophthalmic finding in trauma</p> <p>Case Presentation</p> <p>This is a report of a patient who developed macular holes from sclopetaria induced by indirect trauma. A 22-year-old male, suffered a gunshot wound that passed behind his eyes, resulting in bilateral macular hole formation</p> <p>Conclusion</p> <p>To our knowledge, this is the first reported case in which trauma posterior to the globes caused bilateral macular hole formation</p

    Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach.

    Get PDF
    Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel β 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations; however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNGβ1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials

    Scanning Laser Ophthalmoscopy (SLO)

    Get PDF
    Since the first scanning laser ophthalmoscope (SLO) was introduced in the early 1980s, this imaging technique has been adapted and optimized for various clinical applications based on different contrast mechanism. Reflectance imaging, where the back scattered light is detected, is widely used for eye tracking and as reference image for OCT applications. But also the reflectance modality itself has several important diagnostic applications: laser scanning tomography (SLT), imaging with different laser wavelengths (Multicolor contrast) and others. Fluorescence imaging channels with different excitation wavelengths were introduced to SLOs for angiography, i.e. for the visualization of the vascular system after intravenously injecting an appropriate dye, as well as for autofluorescence imaging of endogenous fluorophores within the retina

    Near-infrared reflectance imaging of neovascular age-related macular degeneration

    Get PDF
    Contains fulltext : 81007.pdf (publisher's version ) (Closed access)PURPOSE: To evaluate various types of neovascular age-related macular degeneration (AMD) by near-infrared fundus reflectance (NIR) as compared to fundus fluorescein angiography (FFA) and to test NIR for assessment of leakage due to choroidal neovascularization (CNV). PATIENTS AND METHODS: Thirty-three patients with neovascular AMD (cases) and 20 age-matched patients with non-exudative AMD and healthy subjects (controls) were examined with a confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph 2). NIR images of neovascular AMD were qualitatively compared to the corresponding FFA and to age-matched controls. CNV membranes and exudation areas were manually segmented on FFA and NIR and analyzed quantitatively. Results : Of all cases included, five eyes had classic CNV, six had minimal classic lesions, 15 occult CNV's and seven eyes had retinal angiomatous proliferation (RAP). A dark halo on NIR was found in all cases and showed high correspondence to leakage on FFA (r (2) = 0.93; p < 0,0005). In classic CNV and minimal classic CNV, the classic part of the lesion on FFA revealed strong correlation to a dark core surrounded by a bright reflecting ring on NIR (r (2) = 0.88; p < 0.0005). Occult parts on FFA of minimal classic CNV and occult CNV lesions appeared as poorly demarcated, jagged areas of increased NIR. RAP was characterized by speckled NIR located at the intraretinal neovascular complex. CONCLUSIONS: NIR imaging in neovascular AMD revealed characteristic alterations depending on the type of CNV. These changes may reflect histological differences of the lesions. Leakage caused local darkening of NIR, presumably originating from increased light-scattering and absorbance by fluid accumulation and sub-cellular structure alterations

    Hyperspectral Computed Tomographic Imaging Spectroscopy of Vascular Oxygen Gradients in the Rabbit Retina In Vivo

    Get PDF
    Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology

    Photovoltaic restoration of sight with high visual acuity

    Get PDF
    Patients with retinal degeneration lose sight due to the gradual demise of photoreceptors. Electrical stimulation of surviving retinal neurons provides an alternative route for the delivery of visual information. We demonstrate that subretinal implants with 70-μm-wide photovoltaic pixels provide highly localized stimulation of retinal neurons in rats. The electrical receptive fields recorded in retinal ganglion cells were similar in size to the natural visual receptive fields. Similarly to normal vision, the retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images and nonlinear spatial summation. In rats with retinal degeneration, these photovoltaic arrays elicited retinal responses with a spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in healthy rats. The ease of implantation of these wireless and modular arrays, combined with their high resolution, opens the door to the functional restoration of sight in patients blinded by retinal degeneration

    Patients and animal models of CNG beta 1-deficient retinitis pigmentosa support gene augmentation approach

    Get PDF
    Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel beta 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations;however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNG beta 1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials
    • …
    corecore