88 research outputs found

    Cerebrovascular complications and infective endocarditis. impact of available evidence on clinical outcome

    Get PDF
    Infective endocarditis (IE) is a life-threatening disease. Its epidemiological profile has substantially changed in recent years although 1-year mortality is still high. Despite advances in medical therapy and surgical technique, there is still uncertainty on the best management and on the timing of surgical intervention. The objective of this review is to produce further insight intothe short- and long-term outcomes of patients with IE, with a focus on those presenting cerebrovascular complications

    JC virus-DNA detection is associated with CD8 fffector accumulation in peripheral blood of patients with multiple sclerosis under natalizumab treatment, independently from JC virus serostatus

    Get PDF
    Although natalizumab (anti-α4 integrin) represents an effective therapy for relapsing remitting multiple sclerosis (RRMS), it is associated with an increased risk of developing progressive multifocal leukoencephalopathy (PML), caused by the polyomavirus JC (JCV). The aim of this study was to explore natalizumab-induced phenotypic changes in peripheral blood T-lymphocytes and their relationship with JCV reactivation. Forty-four patients affected by RRMS were enrolled. Blood and urine samples were classified according to natalizumab infusion number: 0 (N0), 1-12 (N12), 13-24 (N24), 25-36 (N36), and over 36 (N > 36) infusions. JCV-DNA was detected in plasma and urine. T-lymphocyte phenotype was evaluated with flow cytometry. JCV serostatus was assessed. Ten healthy donors (HD), whose ages and sexes matched with the RRMS patients of the N0 group, were enrolled. CD8 effector (CD8 E) percentages were increased in natalizumab treated patients with detectable JCV-DNA in plasma or urine compared to JCV-DNA negative patients (JCV-) (p < 0.01 and p < 0.001, resp.). Patients with CD8 E percentages above 10.4% tended to show detectable JCV-DNA in plasma and/or urine (ROC curve p = 0.001). The CD8 E was increased when JCV-DNA was detectable in plasma or urine, independently from JCV serology, for N12 and N24 groups (p < 0.01). As long as PML can affect RRMS patients under natalizumab treatment with a negative JCV serology, the assessment of CD8 E could help in the evaluation of JCV reactivation

    ERAP1 and ERAP2 Haplotypes Influence Suboptimal HLA-B*27:05-Restricted Anti-Viral CD8+ T Cell Responses Cross-Reactive to Self-Epitopes

    Get PDF
    The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition

    Natalizumab affects T-cell phenotype in multiple sclerosis: implications for JCV reactivation

    Get PDF
    The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects

    A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells

    Get PDF
    High-risk human papillomaviruses (HR-HPVs) are the causative agents for the onset of several epithelial cancers in humans. The deregulated expression of the viral oncoproteins E6 and E7 is the driving force sustaining the progression of malignant transformation in pre-neoplastic lesions. Targeting the viral E6 oncoprotein through inhibitory compounds can counteract the survival of cancer cells due to the reactivation of p53-mediated pathways and represents an intriguing strategy to treat HPV-associated neoplasias. Here, we describe the development of a quantitative and easy-to-perform assay to monitor the E6-mediated degradation of p53 in living cells to be used for small-molecule testing. This assay allows to unbiasedly determine whether a compound can protect p53 from the E6-mediated degradation in cells, through a simple 3-step protocol. We validated the assay by testing two small molecules, SAHA and RITA, reported to impair the E6-mediated p53 degradation. Interestingly, we observed that only SAHA efficiently rescued p53, while RITA could not provide the same degree of protection. The possibility to specifically and quantitatively monitor the ability of a selected compound to rescue p53 in a cellular context through our LumiFluo assay could represent an important step towards the successful development of anti-HPV drugs

    Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics

    Get PDF
    Embryogenesis is an important stage of marine invertebrates with bi-phasic life cycles, as it conditions their larval and adult life. Throughout embryogenesis, phospholipids (PL) play a key role as an energy source, as well as constituents of biological membranes. However, the dynamics of PL during embryogenesis in marine invertebrates is still poorly studied. The present work used a lipidomic approach to determine how polar lipid profiles shift during embryogenesis in two sympatric estuarine crabs, Carcinus maenas and Necora puber. The combination of thin layer chromatography, liquid chromatography – mass spectrometry and gas chromatography – mass spectrometry allowed us to achieve an unprecedented resolution on PL classes and molecular species present on newly extruded embryos (stage 1) and those near hatching (stage 3). Embryogenesis proved to be a dynamic process, with four PL classes being recorded in stage 1 embryos (68 molecular species in total) and seven PL classes at stage 3 embryos (98 molecular species in total). The low interspecific difference recorded in the lipidomic profiles of stage 1 embryos appears to indicate the existence of similar maternal investment. The same pattern was recorded for stage 3 embryos revealing a similar catabolism of embryonic resources during incubation for both crab species

    Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci.

    Get PDF
    Three promising antibacterial peptides were studied with regard to their ability to inhibit the growth and kill the cells of clinical strains of Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. The multifunctional gramicidin S (GS) was the most potent, compared to the membranotropic temporin L (TL), being more effective than the innate-defence regulator IDR-1018 (IDR). These activities, compared across 16 strains as minimal bactericidal and minimal inhibitory concentrations (MIC), are independent of bacterial resistance pattern, phenotype variations and/or biofilm-forming potency. For S. aureus strains, complete killing is accomplished by all peptides at 5 × MIC. For E. faecalis strains, only GS exhibits a rapid bactericidal effect at 5 × MIC, while TL and IDR require higher concentrations. The biofilm-preventing activities of all peptides against the six strains with the largest biofilm biomass were compared. GS demonstrates the lowest minimal biofilm inhibiting concentrations, whereas TL and IDR are consistently less effective. In mature biofilms, only GS completely kills the cells of all studied strains. We compare the physicochemical properties, membranolytic activities, model pharmacokinetics and eukaryotic toxicities of the peptides and explain the bactericidal, antipersister and antibiofilm activities of GS by its elevated stability, pronounced cell-penetration ability and effective utilization of multiple modes of antibacterial action
    • 

    corecore