30 research outputs found

    Spot the Difference-Development of a Syndrome Based Protein Microarray for Specific Serological Detection of Multiple Flavivirus Infections in Travelers

    Get PDF
    Background The family Flaviviridae, genus Flavivirus, holds many of the world’s most prevalent arboviral diseases that are also considered the most important travel related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily based on serology as viremia is often low and typically has already been reduced to undetectable levels when symptoms set in and patients seek medical attention. Serological differentiation between flaviviruses and the false-positive results caused by vaccination and cross-reactivity among the different species, are problematic for surveillance and diagnostics of flaviviruses. Their partially overlapping geographic distribution and symptoms, combined with increase in travel, and preexisting antibodies due to flavivirus vaccinations, expand the need for rapid and reliable multiplex diagnostic tests to supplement currently used methods. Goal We describe the development of a multiplex serological protein microarray using recombinant NS1 proteins for detection of medically important viruses within the genus Flavivirus. Sera from clinical flavivirus patients were used for primary development of the protein microarray. Results Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes. In addition, the serology based on this array allows for discrimination between infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and YFV vaccine induced antibodies when testing for antibodies to other flaviviruses. Conclusion Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.

    Spot the Difference—Development of a Syndrome Based Protein Microarray for Specific Serological Detection of Multiple Flavivirus Infections in Travelers

    Get PDF
    The family Flaviviridae, genus Flavivirus, holds many of the world’s most prevalent arboviral diseases that are also considered the most important travel related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily based on serology as viremia is often low and typically has already been reduced to undetectable levels when symptoms set in and patients seek medical attention. Serological differentiation between flaviviruses and the false-positive results caused by vaccination and cross-reactivity among the different species, are problematic for surveillance and diagnostics of flaviviruses. Their partially overlapping geographic distribution and symptoms, combined with increase in travel, and preexisting antibodies due to flavivirus vaccinations, expand the need for rapid and reliable multiplex diagnostic tests to supplement currently used methods. We describe the development of a multiplex serological protein microarray using recombinant NS1 proteins for detection of medically important viruses within the genus Flavivirus. Sera from clinical flavivirus patients were used for primary development of the protein microarray. Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes. In addition, the serology based on this array allows for discrimination between infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and YFV vaccine induced antibodies when testing for antibodies to other flaviviruses Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses

    Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cattle pathogen, <it>Anaplasma marginale</it>, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of <it>A. marginale </it>(reticulated and dense) occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in <it>Dermacentor variabilis </it>ticks in response to infection with <it>A. marginale</it>, were silenced by RNA interference (RNAi) to determine the effect of silencing on the <it>A. marginale </it>developmental cycle. These four genes encoded for putative glutathione S-transferase (GST), salivary selenoprotein M (SelM), H+ transporting lysosomal vacuolar proton pump (vATPase) and subolesin.</p> <p>Results</p> <p>The impact of gene knockdown on <it>A. marginale </it>tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on <it>A. marginale </it>development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen.</p> <p>Conclusion</p> <p>The results of this RNAi and light microscopic analyses of tick tissues infected with <it>A. marginale </it>after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.</p

    Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control

    Full text link

    Spot the difference-development of a syndrome based protein microarray for specific serological detection of multiple flavivirus infections in travelers

    Get PDF
    Background The family Flaviviridae, genus Flavivirus, holds many of the world’s most prevalent arboviral diseases that are also considered the most important travel related arboviral infections. In most cases, flavivirus diagnosis in travelers is primarily based on serology as viremia is often low and typically has already been reduced to undetectable levels when symptoms set in and patients seek medical attention. Serological differentiation between flaviviruses and the false-positive results caused by vaccination and cross-reactivity among the different species, are problematic for surveillance and diagnostics of flaviviruses. Their partially overlapping geographic distribution and symptoms, combined with increase in travel, and preexisting antibodies due to flavivirus vaccinations, expand the need for rapid and reliable multiplex diagnostic tests to supplement currently used methods. Goal We describe the development of a multiplex serological protein microarray using recombinant NS1 proteins for detection of medically important viruses within the genus Flavivirus. Sera from clinical flavivirus patients were used for primary development of the protein microarray. Results Results show a high IgG and IgM sensitivity and specificity for individual NS1 antigens, and limited cross reactivity, even within serocomplexes. In addition, the serology based on this array allows for discrimination between infection and vaccination response for JEV vaccine, and no cross-reactivity with TBEV and YFV vaccine induced antibodies when testing for antibodies to other flaviviruses. Conclusion Based on these data, multiplex NS1-based protein microarray is a promising tool for surveillance and diagnosis of flaviviruses.
    corecore