1,326 research outputs found
Kurtosis Based Blind Source Extraction of Complex Noncircular Signals with Application in EEG Artifact Removal in Real Time
Non-negative mixtures
This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis
The widespread use of multi-sensor technology and the emergence of big
datasets has highlighted the limitations of standard flat-view matrix models
and the necessity to move towards more versatile data analysis tools. We show
that higher-order tensors (i.e., multiway arrays) enable such a fundamental
paradigm shift towards models that are essentially polynomial and whose
uniqueness, unlike the matrix methods, is guaranteed under verymild and natural
conditions. Benefiting fromthe power ofmultilinear algebra as theirmathematical
backbone, data analysis techniques using tensor decompositions are shown to
have great flexibility in the choice of constraints that match data properties,
and to find more general latent components in the data than matrix-based
methods. A comprehensive introduction to tensor decompositions is provided from
a signal processing perspective, starting from the algebraic foundations, via
basic Canonical Polyadic and Tucker models, through to advanced cause-effect
and multi-view data analysis schemes. We show that tensor decompositions enable
natural generalizations of some commonly used signal processing paradigms, such
as canonical correlation and subspace techniques, signal separation, linear
regression, feature extraction and classification. We also cover computational
aspects, and point out how ideas from compressed sensing and scientific
computing may be used for addressing the otherwise unmanageable storage and
manipulation problems associated with big datasets. The concepts are supported
by illustrative real world case studies illuminating the benefits of the tensor
framework, as efficient and promising tools for modern signal processing, data
analysis and machine learning applications; these benefits also extend to
vector/matrix data through tensorization. Keywords: ICA, NMF, CPD, Tucker
decomposition, HOSVD, tensor networks, Tensor Train
Surfactant-induced migration of a spherical drop in Stokes flow
In Stokes flows, symmetry considerations dictate that a neutrally-buoyant
spherical particle will not migrate laterally with respect to the local flow
direction. We show that a loss of symmetry due to flow-induced surfactant
redistribution leads to cross-stream drift of a spherical drop in Poiseuille
flow. We derive analytical expressions for the migration velocity in the limit
of small non-uniformities in the surfactant distribution, corresponding to
weak-flow conditions or a high-viscosity drop. The analysis predicts that the
direction of migration is always towards the flow centerline.Comment: Significant extension with additional text, figures, equations, et
An analysis of the far-field response to external forcing of a suspension in Stokes flow in a parallel-wall channel
The leading-order far-field scattered flow produced by a particle in a
parallel-wall channel under creeping flow conditions has a form of the
parabolic velocity field driven by a 2D dipolar pressure distribution. We show
that in a system of hydrodynamically interacting particles, the pressure
dipoles contribute to the macroscopic suspension flow in a similar way as the
induced electric dipoles contribute to the electrostatic displacement field.
Using this result we derive macroscopic equations governing suspension
transport under the action of a lateral force, a lateral torque or a
macroscopic pressure gradient in the channel. The matrix of linear transport
coefficients in the constitutive relations linking the external forcing to the
particle and fluid fluxes satisfies the Onsager reciprocal relation. The
transport coefficients are evaluated for square and hexagonal periodic arrays
of fixed and freely suspended particles, and a simple approximation in a
Clausius-Mossotti form is proposed for the channel permeability coefficient. We
also find explicit expressions for evaluating the periodic Green's functions
for Stokes flow between two parallel walls.Comment: 23 pages, 12 figure
Least Dependent Component Analysis Based on Mutual Information
We propose to use precise estimators of mutual information (MI) to find least
dependent components in a linearly mixed signal. On the one hand this seems to
lead to better blind source separation than with any other presently available
algorithm. On the other hand it has the advantage, compared to other
implementations of `independent' component analysis (ICA) some of which are
based on crude approximations for MI, that the numerical values of the MI can
be used for:
(i) estimating residual dependencies between the output components;
(ii) estimating the reliability of the output, by comparing the pairwise MIs
with those of re-mixed components;
(iii) clustering the output according to the residual interdependencies.
For the MI estimator we use a recently proposed k-nearest neighbor based
algorithm. For time sequences we combine this with delay embedding, in order to
take into account non-trivial time correlations. After several tests with
artificial data, we apply the resulting MILCA (Mutual Information based Least
dependent Component Analysis) algorithm to a real-world dataset, the ECG of a
pregnant woman.
The software implementation of the MILCA algorithm is freely available at
http://www.fz-juelich.de/nic/cs/softwareComment: 18 pages, 20 figures, Phys. Rev. E (in press
Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives
Part 2 of this monograph builds on the introduction to tensor networks and
their operations presented in Part 1. It focuses on tensor network models for
super-compressed higher-order representation of data/parameters and related
cost functions, while providing an outline of their applications in machine
learning and data analytics. A particular emphasis is on the tensor train (TT)
and Hierarchical Tucker (HT) decompositions, and their physically meaningful
interpretations which reflect the scalability of the tensor network approach.
Through a graphical approach, we also elucidate how, by virtue of the
underlying low-rank tensor approximations and sophisticated contractions of
core tensors, tensor networks have the ability to perform distributed
computations on otherwise prohibitively large volumes of data/parameters,
thereby alleviating or even eliminating the curse of dimensionality. The
usefulness of this concept is illustrated over a number of applied areas,
including generalized regression and classification (support tensor machines,
canonical correlation analysis, higher order partial least squares),
generalized eigenvalue decomposition, Riemannian optimization, and in the
optimization of deep neural networks. Part 1 and Part 2 of this work can be
used either as stand-alone separate texts, or indeed as a conjoint
comprehensive review of the exciting field of low-rank tensor networks and
tensor decompositions.Comment: 232 page
Speech Denoising Using Non-Negative Matrix Factorization with Kullback-Leibler Divergence and Sparseness Constraints
Proceedings of: IberSPEECH 2012 Conference, Madrid, Spain, November 21-23, 2012.A speech denoising method based on Non-Negative Matrix Factorization (NMF) is presented in this paper. With respect to previous related works, this paper makes two contributions. First, our method does not assume a priori knowledge about the nature of the noise. Second, it combines the use of the Kullback-Leibler divergence with sparseness constraints on the activation matrix, improving the performance of similar techniques that minimize the Euclidean distance and/or do not consider any sparsification. We evaluate the proposed method for both, speech enhancement and automatic speech recognitions tasks, and compare it to conventional spectral subtraction, showing improvements in speech quality and recognition accuracy, respectively, for different noisy conditions.This work has been partially supported by the Spanish Government grants TSI-020110-2009-103 and TEC2011-26807.Publicad
Pushmepullyou: An efficient micro-swimmer
The swimming of a pair of spherical bladders that change their volumes and
mutual distance is efficient at low Reynolds numbers and is superior to other
models of artificial swimmers. The change of shape resembles the wriggling
motion known as {\it metaboly} of certain protozoa.Comment: Minor rephrasing and changes in style; short explanations adde
- …
