115 research outputs found

    Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice

    Full text link
    We report on simulations of reversible random sequential adsorption of dimers on three different lattices: a one-dimensional lattice, a two-dimensional triangular lattice, and a two-dimensional triangular lattice with the nearest neighbors excluded. In addition to the adsorption of particles at a rate K+, we allow particles to leave the surface at a rate K-. The results from the one-dimensional lattice model agree with previous results for the continuous parking lot model. In particular, the long-time behavior is dominated by collective events involving two particles. We were able to directly confirm the importance of two-particle events in the simple two-dimensional triangular lattice. For the two-dimensional triangular lattice with the nearest neighbors excluded, the observed dynamics are consistent with this picture. The two-dimensional simulations were motivated by measurements of Ca++ binding to Langmuir monolayers. The two cases were chosen to model the effects of changing pH in the experimental system.Comment: 9 pages, 10 figure

    Jamming and percolation in random sequential adsorption of straight rigid rods on a two-dimensional triangular lattice

    Get PDF
    Monte Carlo simulations and finite-size scaling analysis have been performed to study the jamming and percolation behavior of linear kk-mers (also known as rods or needles) on the two-dimensional triangular lattice, considering an isotropic RSA process on a lattice of linear dimension LL and periodic boundary conditions. Extensive numerical work has been done to extend previous studies to larger system sizes and longer kk-mers, which enables the confirmation of a nonmonotonic size dependence of the percolation threshold and the estimation of a maximum value of kk from which percolation would no longer occurs. Finally, a complete analysis of critical exponents and universality have been done, showing that the percolation phase transition involved in the system is not affected, having the same universality class of the ordinary random percolation.Comment: 6 figure

    DNA metabarcoding and spatial modelling link diet diversification with distribution homogeneity in European bats

    Get PDF
    Inferences of the interactions between species’ ecological niches and spatial distribution have been historically based on simple metrics such as low-resolution dietary breadth and range size, which might have impeded the identification of meaningful links between niche features and spatial patterns. We analysed the relationship between dietary niche breadth and spatial distribution features of European bats, by combining continent-wide DNA metabarcoding of faecal samples with species distribution modelling. Our results show that while range size is not correlated with dietary features of bats, the homogeneity of the spatial distribution of species exhibits a strong correlation with dietary breadth. We also found that dietary breadth is correlated with bats’ hunting flexibility. However, these two patterns only stand when the phylogenetic relations between prey are accounted for when measuring dietary breadth. Our results suggest that the capacity to exploit different prey types enables species to thrive in more distinct environments and therefore exhibit more homogeneous distributions within their rangesinfo:eu-repo/semantics/publishedVersio

    The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis)—Break rules but keep playing the game

    Get PDF
    B chromosomes (Bs) are known for more than hundred years but their origin, structure and pattern of evolution are not well understood. In the past few years new methodological approaches, involving isolation of Bs followed by whole DNA amplification, DNA probe generation, and fluorescent in situ hybridization (FISH) or the B chromosome DNA sequencing, has allowed detailed analysis of their origin and molecular structure in different species. In this study we explored the origin of Bs in the yellow-necked wood mouse, Apodemus flavicollis, using generation of microdissected DNA probes followed by FISH on metaphase chromosomes. Bs of A. flavicollis were successfully isolated and DNA was used as the template for B-specific probes for the first time. We revealed homology of DNA derived from the analyzed B chromosomes to the pericentromeric region (PR) of sex chromosomes and subtelomeric region of two pairs of small autosomes, but lower homology to the rest of the Y chromosome. Moreover, all analysed Bs had the same structure regardless of their number per individual or the great geographic distance between examined populations from the Balkan Peninsula (Serbia) and Eastern Europe (south region of Russia and central Belarus). Therefore, it was suggested that B chromosomes in A. flavicollis have a unique common origin from the PR of sex chromosomes, and/or similar evolutionary pattern.PloS one (2017), 12(3): e017270

    On the use of pressure-loaded blister tests to characterize the strength and durability of proton exchange membranes

    Get PDF
    The use of pressurized blister specimens to characterize the biaxial strength and durability of proton exchange membranes (PEMs

    HMDB 5.0: the Human Metabolome Database for 2022

    Get PDF
    The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.Analytical BioScience

    Irreversible deposition of extended objects with diffusional relaxation on discrete substrates

    No full text
    Random sequential adsorption with diffusional relaxation of extended objects both on a one-dimensional and planar triangular lattice is studied numerically by means of Monte Carlo simulations. We focus our attention on the behavior of the coverage θ(t) as a function of time. Our results indicate that the lattice dimensionality plays an important role in the present model. For deposition of k-mers on 1D lattice with diffusional relaxation, we found that the growth of the coverage θ(t) above the jamming limit to the closest packing limit θCPL is described by the pattern θCPL - θ(t) ∝ Eβ[-(t/τ)β], where Eβ denotes the Mittag-Leffler function of order β ∈ (0,1). In the case of deposition of extended lattice shapes in 2D, we found that after the initial “jamming", a stretched exponential growth of the coverage θ(t) towards the closest packing limit θCPL occurs, i.e., θCPL - θ(t) ∝ exp[-(t/τ)β]. For both cases we observe that: (i) dependence of the relaxation time τ on the diffusion probability Pdif is consistent with a simple power-law, i.e., τ ∝ Pdif-δ; (ii) parameter β depends on the object size in 1D and on the particle shape in 2D

    Morphology and viscoelastic properties of sealing materials based on EPDM rubber

    No full text
    In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications
    corecore