374 research outputs found

    Hierarchical and Nonlinear Dynamics in Prefrontal Cortex Regulate the Precision of Perceptual Beliefs

    Get PDF
    Actions are shaped not only by the content of our percepts but also by our confidence in them. To study the cortical representation of perceptual precision in decision making, we acquired functional imaging data whilst participants performed two vibrotactile forced-choice discrimination tasks: a fast-slow judgment, and a same-different judgment. The first task requires a comparison of the perceived vibrotactile frequencies to decide which one is faster. However, the second task requires that the estimated difference between those frequencies is weighed against the precision of each percept—if both stimuli are very precisely perceived, then any slight difference is more likely to be identified than if the percepts are uncertain. We additionally presented either pure sinusoidal or temporally degraded “noisy” stimuli, whose frequency/period differed slightly from cycle to cycle. In this way, we were able to manipulate the perceptual precision. We report a constellation of cortical regions in the rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC) and superior frontal gyrus (SFG) associated with the perception of stimulus difference, the presence of stimulus noise and the interaction between these factors. Dynamic causal modeling (DCM) of these data suggested a nonlinear, hierarchical model, whereby activity in the rostral PFC (evoked by the presence of stimulus noise) mutually interacts with activity in the DLPFC (evoked by stimulus differences). This model of effective connectivity outperformed competing models with serial and parallel interactions, hence providing a unique insight into the hierarchical architecture underlying the representation and appraisal of perceptual belief and precision in the PFC

    Perceptions as Hypotheses: Saccades as Experiments

    Get PDF
    If perception corresponds to hypothesis testing (Gregory, 1980); then visual searches might be construed as experiments that generate sensory data. In this work, we explore the idea that saccadic eye movements are optimal experiments, in which data are gathered to test hypotheses or beliefs about how those data are caused. This provides a plausible model of visual search that can be motivated from the basic principles of self-organized behavior: namely, the imperative to minimize the entropy of hidden states of the world and their sensory consequences. This imperative is met if agents sample hidden states of the world efficiently. This efficient sampling of salient information can be derived in a fairly straightforward way, using approximate Bayesian inference and variational free-energy minimization. Simulations of the resulting active inference scheme reproduce sequential eye movements that are reminiscent of empirically observed saccades and provide some counterintuitive insights into the way that sensory evidence is accumulated or assimilated into beliefs about the world

    Scale-free bursting in human cortex following hypoxia at birth

    Get PDF
    The human brain is fragile in the face of oxygen deprivation. Even a briefinterruption of metabolic supply at birth challenges an otherwise healthy neonatal cortex, leading to a cascade of homeostatic responses. During recovery from hypoxia, cortical activity exhibits a period of highly irregular electrical fluctuations known as burst suppression. Here we show that these bursts have fractal properties, with power-law scaling of burst sizes across a remarkable 5 orders of magnitude and a scale-free relationship between burst sizes and durations. Although burst waveforms vary greatly, their average shape converges to a simple form that is asymmetric at long time scales. Using a simple computational model, we argue that this asymmetry reflects activity-dependent changes in the excitatory-inhibitory balance of cortical neurons. Bursts become more symmetric following the resumption of normal activity, with a corresponding reorganization of burst scaling relationships. These findings place burst suppression in the broad class of scale-free physical processes termed crackling noise and suggest that the resumption of healthy activity reflects a fundamental reorganization in the relationship between neuronal activity and its underlying metabolic constraints

    The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields

    Get PDF
    The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences

    audiology 2012

    Get PDF
    <p>All other parameters as in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1000092#pcbi-1000092-g010" target="_blank">Figure 10</a>. (A) Individual mean synaptic currents of all nonsensory nodes. (B) Total synaptic currents averaged across the nonsensory sheet. The injection of the externally evoked sensory currents into the prior activity actually has a slightly desynchronizing effect.</p

    Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators

    Get PDF
    Peter Ashwin and Jon Borresen, Physical Review E, Vol. 70, p. 026203 (2004). "Copyright © 2004 by the American Physical Society."We study properties of the dynamics underlying slow cluster oscillations in two systems of five globally coupled oscillators. These slow oscillations are due to the appearance of structurally stable heteroclinic connections between cluster states in the noise-free dynamics. In the presence of low levels of noise they give rise to long periods of residence near cluster states interspersed with sudden transitions between them. Moreover, these transitions may occur between cluster states of the same symmetry, or between cluster states with conjugate symmetries given by some rearrangement of the oscillators. We consider the system of coupled phase oscillators studied by Hansel et al. [Phys. Rev. E 48, 3470 (1993)] in which one can observe slow, noise-driven oscillations that occur between two families of two cluster periodic states; in the noise-free case there is a robust attracting heteroclinic cycle connecting these families. The two families consist of symmetric images of two inequivalent periodic orbits that have the same symmetry. For N=5 oscillators, one of the periodic orbits has one unstable direction and the other has two unstable directions. Examining the behavior on the unstable manifold for the two unstable directions, we observe that the dimensionality of the manifold can give rise to switching between conjugate symmetry orbits. By applying small perturbations to the system we can easily steer it between a number of different marginally stable attractors. Finally, we show that similar behavior occurs in a system of phase-energy oscillators that are a natural extension of the phase model to two dimensional oscillators. We suggest that switching between conjugate symmetries is a very efficient method of encoding information into a globally coupled system of oscillators and may therefore be a good and simple model for the neural encoding of information

    Interhemispheric white matter integrity in young people with bipolar disorder and at high genetic risk

    Get PDF
    White matter (WM) impairments have been reported in patients with bipolar disorder (BD) and those at high familial risk of developing BD. However, the distribution of these impairments has not been well characterized. Few studies have examined WM integrity in young people early in the course of illness and in individuals at familial risk who have not yet passed the peak age of onset. WM integrity was examined in 63 BD subjects, 150 high-risk (HR) individuals and 111 participants with no family history of mental illness (CON). All subjects were aged 12 to 30 years. This young BD group had significantly lower fractional anisotropy within the genu of the corpus callosum (CC) compared with the CON and HR groups. Moreover, the abnormality in the genu of the CC was also present in HR participants with recurrent major depressive disorder (MDD) (n = 16) compared with CON participants. Our findings provide important validation of interhemispheric abnormalities in BD patients. The novel finding in HR subjects with recurrent MDD – a group at particular risk of future hypo/manic episodes – suggests that this may potentially represent a trait marker for BD, though this will need to be confirmed in longitudinal follow-up studies

    Automated cot-side tracking of functional brain age in preterm infants

    Get PDF
    Objective A major challenge in the care of preterm infants is the early identification of compromised neurological development. While several measures are routinely used to track anatomical growth, there is a striking lack of reliable and objective tools for tracking maturation of early brain function; a cornerstone of lifelong neurological health. We present a cot-side method for measuring the functional maturity of the newborn brain based on routinely available neurological monitoring with electroencephalography (EEG). Methods We used a dataset of 177 EEG recordings from 65 preterm infants to train a multivariable prediction of functional brain age (FBA) from EEG. The FBA was validated on an independent set of 99 EEG recordings from 42 preterm infants. The difference between FBA and postmenstrual age (PMA) was evaluated as a predictor for neurodevelopmental outcome. Results The FBA correlated strongly with the PMA of an infant, with a median prediction error of less than 1 week. Moreover, individual babies follow well-defined individual trajectories. The accuracy of the FBA applied to the validation set was statistically equivalent to the training set accuracy. In a subgroup of infants with repeated EEG recordings, a persistently negative predicted age difference was associated with poor neurodevelopmental outcome. Interpretation The FBA enables the tracking of functional neurodevelopment in preterm infants. This establishes proof of principle for growth charts for brain function, a new tool to assist clinical management and identify infants who will benefit most from early intervention.Peer reviewe
    corecore