774 research outputs found
Parallel Information Transfer in a Multi-Node Quantum Information Processor
We describe a method for coupling disjoint quantum bits (qubits) in different
local processing nodes of a distributed node quantum information processor. An
effective channel for information transfer between nodes is obtained by moving
the system into an interaction frame where all pairs of cross-node qubits are
effectively coupled via an exchange interaction between actuator elements of
each node. All control is achieved via actuator-only modulation, leading to
fast implementations of a universal set of internode quantum gates. The method
is expected to be nearly independent of actuator decoherence and may be made
insensitive to experimental variations of system parameters by appropriate
design of control sequences. We show, in particular, how the induced cross-node
coupling channel may be used to swap the complete quantum states of the local
processors in parallel.Comment: revtex4-1; 7 pages; 5 figures. New version includes minor changes,
with updated Fig. 4 and new supplemental materia
'She's like a daughter to me': insights into care, work and kinship from rural Russia
This article draws on ethnographic research into a state-funded homecare service in rural Russia. The article discusses intersections between care, work and kinship in the relationships between homecare workers and their elderly wards and explores the ways in which references to kinship, as a means of authenticating paid care and explaining its emotional content, reinforce public and private oppositions while doing little to relieve the tensions and conflicts of care work. The discussion brings together detailed empirical insights into local ideologies and practices as a way of generating new theoretical perspectives, which will be of relevance beyond the particular context of study
How U.S. Ocean Policy and Market Power Can Reform the Coral Reef Wildlife Trade
As the world’s largest importer of marine ornamental species for the aquaria, curio, home décor, and jewelry industries, the United States has an opportunity to leverage its considerable market power to promote more sustainable trade and reduce the effects of ornamental trade stress on coral reefs worldwide. Evidence indicates that collection of some coral reef animals for these trades has caused virtual elimination of local populations, major changes in age structure, and promotion of collection practices that destroy reef habitats. Management and enforcement of collection activities in major source countries such as Indonesia and the Philippines remain weak. Strengthening US trade laws and enforcement capabilities combined with increasing consumer and industry demand for responsible conservation can create strong incentives for improving management in source countries. This is particularly important in light of the March 2010 failure of the parties to the Convention on International Trade in Endangered Species (CITES) to take action on key groups of corals
Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae
Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.Jennifer R. Bellon, Frank Schmid, Dimitra L. Capone, Barbara L. Dunn, Paul J. Chamber
The zinc cluster protein Sut1 contributes to filamentation in Saccharomyces cerevisiae
Copyright © 2013, American Society for Microbiology. All Rights ReservedSut1 is a transcriptional regulator of the Zn(II)(2)Cys(6) family in the budding yeast Saccharomyces cerevisiae. The only function that has been attributed to Sut1 is sterol uptake under anaerobic conditions. Here, we show that Sut1 is also expressed in the presence of oxygen, and we identify a novel function for Sut1. SUT1 overexpression blocks filamentous growth, a response to nutrient limitation, in both haploid and diploid cells. This inhibition by Sut1 is independent of its function in sterol uptake. Sut1 downregulates the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5. Several of these Sut1 targets (GAT2, HAP4, MGA1, RHO3, and RHO5) are essential for filamentation in haploids and/or diploids. Furthermore, the expression of the Sut1 target genes, with the exception of MGA1, is induced during filamentous growth. We also show that SUT1 expression is autoregulated and inhibited by Ste12, a key transcriptional regulator of filamentation. We propose that Sut1 partially represses the expression of GAT2, HAP4, MGA1, MSN4, NCE102, PRR2, RHO3, and RHO5 when nutrients are plentiful. Filamentation-inducing conditions relieve this repression by Sut1, and the increased expression of Sut1 targets triggers filamentous growth.The project was supported by Deutsche Forschungsgemeinschaft grant HO 2098/
Control of Transcription by Cell Size
Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.National Institutes of Health (U.S.) (grant GM035010)National Institutes of Health (U.S.) (grant GM040266
Correction: AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae
The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community
A pleiotropic missense variant in SLC39A8 is associated with Crohn's disease and human gut microbiome composition
Genome-wide association studies have identified 200 inflammatory bowel disease (IBD) loci, but the genetic architecture of Crohn's disease (CD) and ulcerative colitis remain incompletely defined. Here, we aimed to identify novel associations between IBD and functional genetic variants using the Illumina ExomeChip (San Diego, CA)
Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease
<p>Abstract</p> <p>Background</p> <p>Marrow stromal cells (MSC), the non-hematopoietic precursor cells in bone marrow, are being investigated for therapeutic potential in CNS disorders. Although <it>in vitro </it>studies have suggested that MSC may be immunologically inert, their immunogenicity following transplantation into allogeneic recipients is unclear. The primary objective of this study was to investigate the cellular immune response to MSC injected into the striatum of allogeneic recipients (6-hydroxydopamine [6-OHDA]-hemilesioned rats, an animal model of Parkinson's disease [PD]), and the secondary objective was to determine the ability of these cells to prevent nigrostriatal dopamine depletion and associated motor deficits in these animals.</p> <p>Methods</p> <p>5-Bromo-2-deoxyuridine (BrdU) – labeled MSC from two allogeneic sources (Wistar and ACI rats) were implanted into the striatum of adult Wistar rats at the same time as 6-OHDA was administered into the substantia nigra. Behavioral tests were administered one to two weeks before and 16–20 days after 6-OHDA lesioning and MSC transplantation. Immunocytochemical staining for T helper and T cytotoxic lymphocytes, microglia/macrophages, and major histocompatibility class I and II antigens was performed on post-transplantation days 22–24. MSC were detected with an anti-BrdU antibody.</p> <p>Results</p> <p>Tissue injury due to the transplantation procedure produced a localized cellular immune response. Unexpectedly, both sources of allogeneic MSC generated robust cellular immune responses in the host striatum; the extent of this response was similar in the two allograft systems. Despite these immune responses, BrdU<sup>+ </sup>cells (presumptive MSC) remained in the striatum of all animals that received MSC. The numbers of remaining MSC tended to be increased (<it>p </it>= 0.055) in rats receiving Wistar MSC versus those receiving ACI MSC. MSC administration did not prevent behavioral deficits or dopamine depletion in the 6-OHDA-lesioned animals.</p> <p>Conclusion</p> <p>MSC, when implanted into the striatum of allogeneic animals, provoke a marked immune response which is not sufficient to clear these cells by 22–24 days post-transplantation. In the experimental paradigm in this study, MSC did not prevent nigrostriatal dopamine depletion and its associated behavioral deficits. Additional studies are indicated to clarify the effects of this immune response on MSC survival and function before initiating trials with these cells in patients with PD or other neurodegenerative disorders.</p
- …
