613 research outputs found

    On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms

    Full text link
    Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of closed lambda terms predetermine the unique simply-typed lambda term that can be obtained by labeling their leaves with de Bruijn indices. We derive, through a sequence of logic program transformations, efficient code for their combinatorial generation and study their statistical properties. As a result, we obtain context-free grammars describing closable and uniquely closable skeletons of lambda terms, opening the door for their in-depth study with tools from analytic combinatorics. Our empirical study of the more difficult case of (uniquely) typable terms reveals some interesting open problems about their density and asymptotic behavior. As a connection between the two classes of terms, we also show that uniquely typable closed lambda term skeletons of size 3n+13n+1 are in a bijection with binary trees of size nn.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Distances on Lozenge Tilings

    Get PDF
    International audienceIn this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n5, We show that there is some deficient pairs of tilings for which the flip connection needs more flips than the combinatorial lower bound indicates

    The ESO Key-Programme ``A Homogeneous Bright QSO Survey'' - I The Methods and the ``Deep'' Fields

    Get PDF
    This is the first paper in a series aimed at defining a statistically significant sample of QSOs in the range 15<B<18.75 15 < B < 18.75 and 0.3<z<2.2 0.3 < z < 2.2. The selection is carried out using direct plates obtained at the ESO and UK Schmidt Telescopes, scanned with the COSMOS facility and searched for objects with an ultraviolet excess. Follow-up spectroscopy, carried out at ESO La Silla, is used to classify each candidate. In this initial paper, we describe the scientific objectives of the survey; the selection and observing techniques used. We present the first sample of 285 QSOs (MB<23M_B < -23) in a 153 deg2^2 area, covered by the six ``deep'' fields, intended to obtain significant statistics down B18.75B \simeq 18.75 with unprecedented photometric accuracy. From this database, QSO counts are determined in the magnitude range 17<B<18.75 17 < B < 18.75.Comment: 21 pages uuencoded compressed postscript, to appear in Astronomy and Astrophysics Supplements, 199

    T2 lesion location really matters: a 10 year follow-up study in primary progressive multiple sclerosis

    Get PDF
    Objectives: Prediction of long term clinical outcome in patients with primary progressive multiple sclerosis (PPMS) using imaging has important clinical implications, but remains challenging. We aimed to determine whether spatial location of T2 and T1 brain lesions predicts clinical progression during a 10-year follow-up in PPMS. Methods: Lesion probability maps of the T2 and T1 brain lesions were generated using the baseline scans of 80 patients with PPMS who were clinically assessed at baseline and then after 1, 2, 5 and 10 years. For each patient, the time (in years) taken before bilateral support was required to walk (time to event (TTE)) was used as a measure of progression rate. The probability of each voxel being ‘lesional’ was correlated with TTE, adjusting for age, gender, disease duration, centre and spinal cord cross sectional area, using a multiple linear regression model. To identify the best, independent predictor of progression, a Cox regression model was used. Results: A significant correlation between a shorter TTE and a higher probability of a voxel being lesional on T2 scans was found in the bilateral corticospinal tract and superior longitudinal fasciculus, and in the right inferior fronto-occipital fasciculus (p<0.05). The best predictor of progression rate was the T2 lesion load measured along the right inferior fronto-occipital fasciculus (p=0.016, hazard ratio 1.00652, 95% CI 1.00121 to 1.01186). Conclusion: Our results suggest that the location of T2 brain lesions in the motor and associative tracts is an important contributor to the progression of disability in PPMS, and is independent of spinal cord involvement

    Threshold J/ψJ/\psi- production in nucleon-nucleon collisions

    Get PDF
    We analyze J/ψJ/\psi- production in nucleon-nucleon collisions near threshold in the framework of a general model independent formalism, which can be applied to any reaction N+NN+N+V0N+N\to N+N+V^0, where V0=ωV^0=\omega, ϕ\phi, or J/ψJ/\psi. Such reactions show large isotopic effects: a large difference for pppp- and pnpn-collisions, which is due to the different spin structure of the corresponding matrix elements. The analysis of the spin structure and of the polarization observables is based on symmetry properties of the strong interaction. Using existing experimental data on the different decays of J/ψJ/\psi-meson, we suggest a model for N+NN+N+J/ψN+N\to N+N+J/\psi, based on tt-channel η+π\eta+\pi-exchanges. We predict polarization phenomena for the n+pn+p+J/ψn+p\to n+p+J/\psi-reaction and the ratio of cross sections for npnp and pppp-collisions. For the processes η(π)+NN+J/ψ\eta(\pi)+N\to N+J/\psi we apply two different approaches: vector meson exchange and local four-particle interaction. In both cases we find larger J/ψJ/\psi-production in npnp-collisions, with respect to pppp-collisions.Comment: 17 pages, 6 figure

    Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice

    Get PDF
    Background Gain-of-function missense mutations in the alpha(1A) subunit of neuronal Ca(V)2.1 channels, which define Familial Hemiplegic Migraine Type 1 (FHM1), result in enhanced cortical glutamatergic transmission and a higher susceptibility to cortical spreading depolarization. It is now well established that neurons signal to surrounding glial cells, namely astrocytes and microglia, in the central nervous system, which in turn become activated and in pathological conditions can sustain neuroinflammation. We and others previously demonstrated an increased activation of pro-algogenic pathways, paralleled by augmented macrophage infiltration, in both isolated trigeminal ganglia and mixed trigeminal ganglion neuron-satellite glial cell cultures of FHM1 mutant mice. Hence, we hypothesize that astrocyte and microglia activation may occur in parallel in the central nervous system. Methods We have evaluated signs of reactive glia in brains from naive FHM1 mutant mice in comparison with wild type animals by immunohistochemistry and Western blotting. Results Here we show for the first time signs of reactive astrogliosis and microglia activation in the naive FHM1 mutant mouse brain. Conclusions Our data reinforce the involvement of glial cells in migraine, and suggest that modulating such activation may represent an innovative approach to reduce pathology

    A novel approach with "skeletonised MTR" measures tract-specific microstructural changes in early primary-progressive MS

    Get PDF
    We combined tract‐based spatial statistics (TBSS) and magnetization transfer (MT) imaging to assess white matter (WM) tract‐specific short‐term changes in early primary‐progressive multiple sclerosis (PPMS) and their relationships with clinical progression. Twenty‐one PPMS patients within 5 years from onset underwent MT and diffusion tensor imaging (DTI) at baseline and after 12 months. Patients' disability was assessed. DTI data were processed to compute fractional anisotropy (FA) and to generate a common WM “skeleton,” which represents the tracts that are “common” to all subjects using TBSS. The MT ratio (MTR) was computed from MT data and co‐registered with the DTI. The skeletonization procedure derived for FA was applied to each subject's MTR image to obtain a “skeletonised” MTR map for every subject. Permutation tests were used to assess (i) changes in FA, principal diffusivities, and MTR over the follow‐up, and (ii) associations between changes in imaging parameters and changes in disability. Patients showed significant decreases in MTR over one year in the corpus callosum (CC), bilateral corticospinal tract (CST), thalamic radiations, and superior and inferior longitudinal fasciculi. These changes were located both within lesions and the normal‐appearing WM. No significant longitudinal change in skeletonised FA was found, but radial diffusivity (RD) significantly increased in several regions, including the CST bilaterally and the right inferior longitudinal fasciculus. MTR decreases, RD increases, and axial diffusivity decreases in the CC and CST correlated with a deterioration in the upper limb function. We detected tract‐specific multimodal imaging changes that reflect the accrual of microstructural damage and possibly contribute to clinical impairment in PPMS. We propose a novel methodology that can be extended to other diseases to map cross‐subject and tract‐specific changes in MTR
    corecore