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T2 lesion location really matters: a 10 year follow-up
study in primary progressive multiple sclerosis

B Bodini,1,2 M Battaglini,3 N De Stefano,3 Z Khaleeli,1 F Barkhof,4 D Chard,5

M Filippi,6 X Montalban,7 C Polman,4 M Rovaris,6,8 A Rovira,7 R Samson,5 D Miller,5

A Thompson,1 O Ciccarelli1

ABSTRACT
Objectives Prediction of long term clinical outcome in
patients with primary progressive multiple sclerosis
(PPMS) using imaging has important clinical implications,
but remains challenging. We aimed to determine
whether spatial location of T2 and T1 brain lesions
predicts clinical progression during a 10-year follow-up in
PPMS.
Methods Lesion probability maps of the T2 and T1 brain
lesions were generated using the baseline scans of 80
patients with PPMS who were clinically assessed at
baseline and then after 1, 2, 5 and 10 years. For each
patient, the time (in years) taken before bilateral support
was required to walk (time to event (TTE)) was used as
a measure of progression rate. The probability of each
voxel being ‘lesional’ was correlated with TTE, adjusting
for age, gender, disease duration, centre and spinal cord
cross sectional area, using a multiple linear regression
model. To identify the best, independent predictor of
progression, a Cox regression model was used.
Results A significant correlation between a shorter TTE
and a higher probability of a voxel being lesional on T2
scans was found in the bilateral corticospinal tract and
superior longitudinal fasciculus, and in the right inferior
fronto-occipital fasciculus (p<0.05). The best predictor of
progression rate was the T2 lesion load measured along
the right inferior fronto-occipital fasciculus (p¼0.016,
hazard ratio 1.00652, 95% CI 1.00121 to 1.01186).
Conclusion Our results suggest that the location of T2
brain lesions in the motor and associative tracts is an
important contributor to the progression of disability in
PPMS, and is independent of spinal cord involvement.

INTRODUCTION
Prediction of long term clinical outcome in patients
with primary progressive multiple sclerosis (PPMS)
has important clinical implications, in both the
design of treatment trials and in providing prog-
nostic advice to individual patients. Whole brain T2
and T1 lesion loads, which are objective measures of
visible tissue damage, have been studied as potential
predictors of long term clinical outcome in a large
cohort of PPMS patients who were followed-up for
10 years in five European MAGNIMS (MRI in MS)
centres.1Neither T2norT1 lesion load at study entry
predicted clinical deterioration over 10 years.1 This is
surprising, since T2 lesion volume has been shown to
predict disability after 20 years in patients who
presented with clinically isolated syndrome,2 and
suggests differences in the mechanisms of tissue
damage between relapsingeremitting and PPMS.

In searching for other features of T2 and T1 brain
lesions which could predict long term outcome in
PPMS, in the same paper we examined the short
term increase in T2 and T1 lesion loads over
2 years. We found that this also failed to predict
progression over 10 years,1 although it was more
promising over 5 years.3 4 This suggests that accu-
mulation of visible lesions over a short time showed
no advantage over total lesion load at study entry
when it came to predicting progression at 10 years.
Thus, predictors which are promising in short term
follow-up studies may not be as compelling in long
term studies.
Another, mostly unexplored, feature of lesions

which may be relevant to predicting progression is
their topographic distribution. Therefore, we aimed
to investigate whether the location of T2 and
T1 lesions at baseline predicts progression over
10 years, performing a retrospective study in the
same cohort of PPMS patients.1 To explore lesion
location, we employed the Lesion Probability Map-
ping (LPM) approach, that provides a voxel-wise,
quantitative description of the topographic distri-
bution of brain lesions.5 Since a possible limitation
of previous studies which explored predictors of
progression, is the use of step changes of Expanded
Disability Status Scale (EDSS) as the outcome
measure,6 we defined the time (in years) taken to
require bilateral support in order to walk as a
measure of the individual progression rate. We then
performed a time to event (TTE) analysis and
combined it with LPM. Although cervical cord cross
sectional area at study entry did not predict clinical
outcome at 10 years in this cohort of PPMS
patients,1 spinal cord damage is thought to play
an important role in determining disability in
PPMS7e9; therefore, we corrected our analysis for
baseline cord cross-sectional area. We also tested
whether regional T2 and T1 lesion loads located in
specific, clinically strategic areas, were significant
predictors of TTE.

METHODS
Patients
Of the 101 patients with PPMS who were followed-
up for 10 years in five European centres (Amsterdam,
Barcelona, Bordeaux, London and Milan),1 80
participants, whose baseline imaging data were
available, were included in this study. All of these
patients were clinically assessed using the EDSS10 at
baseline (see table 1 for baseline demographic, clin-
ical and radiological characteristics), 76 after 1 year,
59 after 2 years, 75 after 5 years and 79 after 10 years.
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Of the 79 patients assessed after 10 years, 36were scored using the
EDSS telephone interview.11 Four patients scored 10 on the EDSS
as their death was due toMS; one death occurred between years 2
and 5, and three between years 5 and 10.

All subjects gave informed, written consent before the study,
which was approved by the local Ethics Committees in each one
of the participating centres.

MRI acquisition
Patients underwent the same imaging protocol in each centre at
study entry. In London, data were acquired using a 1.5 T GE
Signa scanner, whereas at the other four sites a 1.5 T Siemens
scanner was used. The protocol included T1 and dual echo (T2
and proton density (PD) weighted spin echo) imaging of the
brain (see supplementary table 1 online for the acquisition
parameters in each centre). Volumetric images of the spinal cord
were also acquired, as previously described.12

MRI processing
Lesion probability map (LPM)
For the following steps, we used the imaging tools available in
the Functional MRI of the Brain’s Software Library (FSL, http://
www.fmrib.ox.ac.uk/fsl).
1. Lesion masks

A single observer (VS), who was blinded to the clinical
details, contoured the PD hyperintense and T1 hypointense
lesions, with reference to the co-registered T2 weighted
images.13 Binary lesion masks were then produced and
individual lesion loads calculated.

2. Template construction
Each patient’s T1 scan was registered to the Montreal
Neurological Institute (MNI152) template using a fully
affine transformation (12 parameters) (FLIRT - FMRIB’s
Linear Image Registration Tool), as per previous work in
patient groups with a variety of neurological conditions.14e16

All of the the resulting transformed images were averaged to
obtain the internal T1 template.

3. Transformation of individual scans and lesion masks into T1
template
Each patient’s PD weighted scan was registered to the
corresponding T1 scan in native space using a rigid body
transformation and trilinear interpolation (with FLIRT). The
transformation parameters were then applied to the T2 lesion
masks, bringing them into alignment with the individual T1
scans. Each patient’s T1 scan was then registered to the T1
template, using non-linear registration (FNIRT -FMRIB’s
Non Linear Image Registration Tool), and the resulting
transformation parameters were applied to the T1 and T2
lesion masks, which had been previously registered onto the
individual T1, using trilinear interpolation. In order to
maintain the volume of the transformed lesion masks as

close as possible to those in the native brain images, after the
trilinear interpolation, the lesion masks were thresholded
using a value of 0.5. Two observers independently checked all
the co-registered lesions masks (BB, MB).

4. T2 and T1 LPMs
T2 and T1 LPMs were generated by averaging the T2 and T1
lesion masks, at each voxel, in standard space. For each map,
the resulting voxel intensity indicates how frequently the
voxel in question is within a lesion across all patients, ie, the
probability of that voxel being lesional. Regions containing
the peaks of lesion probability were localised using the Johns
Hopkins University white matter tractography atlas, pro-
vided by FSL.17

Since male gender has been associated, in this patient cohort,
with a worse long term outcome,1 the differences in the
probability of each voxel being lesional between male and
female patients were assessed using an unpaired t-test and
corrected for multiple comparisons at cluster level (t 2,
p<0.05) using permutation based inference.18

Cord cross-sectional area
Cord cross-sectional area at the C2e3 level was measured using
a semiautomated technique previously described.19 Previous
work has suggested that C2e3 level offers several anatomical
advantages for measuring cord cross-sectional area, with high
cord to cerebrospinal fluid contrast, limited inter-subject vari-
ability in cord cross-sectional area at this level and a low prob-
ability of disc protrusions.

Statistical analysis
1. Correlation between lesion location and time to event

For each patient, the time (in years) taken fromdisease onset to
reach the level of disability that requires a constant bilateral
support to walk (ie, EDSS¼6.5) was defined as the TTE and
was used as a measure of progression rate. An EDSS of 6.5 was
chosen as it is easy to recognise and represents a clinically
meaningful stage in the progression of disability. It was also
appropriate for our cohort, whosemedian EDSS at study entry
was 5.7 (range 2e8.5). In cases where the EDSS was scored as
equal or greater than 6.5 at a follow-up visit for the first time, it
was assumed that the patient reached this score midway
between the date of the visit and the preceding assessment.
Patients were divided into three groups of similar size on the
basis of their TTE: (1) patients who reached EDSS 6.5 before
entering the study (n¼23); (2) patients who reached EDSS 6.5
between the baseline assessment and year 5 (n¼23); and (3)
patients who reached EDSS 6.5 between year 5 and year 10
(n¼13) and those who had not reached the event at the end of
the study (n¼21).
To identify regions where the probability of each voxel being
lesional in T2-LPM and T1-LPM correlated with TTE, an

Table 1 Demographic, clinical and radiological characteristics of the patients studied in each centre, at study entry

Characteristics Amsterdam Barcelona Bordeaux London Milan

Patients (n) 20 22 4 22 12

Gender (F/M) 10/10 9/13 3/1 11/11 2/10

Age (years) (mean (range)) 53.5 (76e34) 45.7 (31e64) 48.7 (43e59) 52.7 (29e74) 45.1 (32e50)

Disease duration (years) (mean (range)) 11.7 (2e32) 8.8 (3e24) 9.0 (2e11) 10.3 (1e24) 6.8 (2e17)

EDSS score (median (range)) 6.0 (2e8) 5.5 (2e7.5) 5.0 (4e6) 6.0 (2.5e8.5) 4.0 (2e8.5)

T2 lesion load (ml)(mean (SD)) 8.4 (11.0) 15.8 (16.0) 12.6 (17.7) 15.3 (17.5) 7.7 (5.7)

T1 lesion load (ml)(mean (SD)) 3.4 (4.9) 5.6 (7.2) 6.0 (7.7) 4.7 (7.7) 3.8 (6.6)

Spinal cord area (mm2) (mean (SD)) 72.3 (10.1) 77.9 (8.2) e 70.3 (9.4) 77.4 (8.1)

EDSS, Expanded Disability Status Scale.
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ordinal multiple regression was used, with an indicator of the
three TTE categories as regressor, and age, gender, disease
duration at baseline, centre and cord cross-sectional area as
additional covariates. Corrections for multiple comparisons at
cluster level (t 2, p<0.05) were performed using permutation-
based inference.18

2. Predictors of progression rate
A Cox regression analysis was performed, entering TTE as the
dependent variable, and the number of lesional voxels (or
regional lesion loads) extracted from tracts that encompassed
regions showing significantassociations in thepreviousanalysis,
as independent variables. T2 and T1 total lesion loads, cord
cross-sectional area, gender, age, disease duration and centre
were entered as additional, independent variables. In particular,
each independent variable was entered individually into the
model. Subsequently, significant and borderline predictors were
modelled together to determine the best, independent predictor.
This analysiswas performedusing Stata 9.2 (http://www.stata.
com) (Stata-Corp, College Station, Texas, USA); results with
p<0.05 were considered significant.

RESULTS
T2 and T1 lesion probability maps
The brain locations that showed the highest probability of
detecting T2 hyperintense and T1 hypointense lesions were the
superior and posterior regions of the corona radiata (figure 1).
The maximum local probability was higher in T2-LPM
compared with T1-LPM (42% vs 26%). No significant differences
in the probability of a voxel being lesional in T2-LPM and T1-
LPM between men and women were found.

Correlation between lesion location and time to event
Of the 80 patients included in the study, 59 (73.7%) reached the
event (EDSS¼6.5) either before entering the study (23 patients,
28.7%) or during the course of the study (36 patients, 45%),
while 21 (26.3%) had not reached the event when the study
terminated. The median of the TTE calculated on those who
reached EDSS 6.5, was 11.5 years (range 3e29 years).
There was a significant correlation between a higher proba-

bility of a voxel being lesional on T2-LPM and a shorter TTE
(p<0.05) in the following three regions: the bilateral cortico-
spinal tract (CST) (from the cortex to the corona radiata), the
bilateral superior longitudinal fasciculus (SLF) and the right
inferior fronto-occipital fasciculus (IFOF) (figure 2). Conversely,
there was no correlation between lesion probability on T1-LPMs
and TTE, although a statistical trend towards a significant
association was found in a region in the right posterior corona
radiata which included the CST and the SLF (p<0.08).

Predictors of progression rate
The number of lesional voxels and corresponding regional lesion
loads extracted from tracts containing regions that showed an
association between lesion location and TTE are summarised in
table 2.
When predictors were entered individually into the Cox

regression model, we found that a greater number of T2 lesional
voxels extracted from the right IFOF was associated with
a shorter TTE (p¼0.01, hazard ratio (HR) 1.00689, 95% CI
1.00158 to 1.01225); for every extra ml of lesions within the
right IFOF, the time taken to reach EDSS 6.5 was halved. The
number of T2 lesional voxels extracted from the bilateral CST

Figure 1 T2-Lesion probability map
(LPM) (top row) and T1-LPM (bottom
row); the colour code indicates the
probability of a voxel being lesional. The
maximum probability was found in the
superior and posterior regions of the
corona radiata, and was higher in T2-
LPM compared with T1-LPM (42% vs
26%).
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showed a trend towards a correlation with TTE (p¼0.07, HR
1.002, 95% CI 0.99981 to 1.00442); for every extra ml of lesions
localised within the CSTs, the time taken to reach the event was
reduced by 30%. The number of lesional voxels in the bilateral
SLF did not predict TTE.

Among the other variables tested individually in the Cox
regression, we found that: (i) the whole brain T1 hypointense
lesion load was significantly associated with TTE (p¼0.04, HR
1.00004, 95% CI 1.000001 to 1.00007); for every extra ml in total
T1 lesion load, the time taken to reach the event was reduced by
0.5%; and (ii) there was a borderline significant association
between gender and TTE (p¼0.062, HR 1.62, 95% CI 0.96 to
2.73); the time taken for men to reach the event was reduced
by 60%.

When all the significant and borderline predictors were
entered together into the Cox regression model, the number of
T2 lesional voxels in the right IFOF was the best independent
predictor of TTE (p¼0.016, HR 1.00652, 95% CI 1.00121 to
1.01186). The number of T2 lesional voxels in the bilateral CST
(p¼0.07, HR 1.0022, 95% CI 0.99979 to 1.00461) and the whole
brain T1 hypointense lesion load (p¼0.07, HR 1.00003, 95% CI

0.99999 to 1.00006) became borderline independent predictors
while gender became non-significant.

DISCUSSION
We found that the location of T2 lesions at baseline is associated
with the rate of progression in PPMS over a 10 year period. In
particular, a relationship between a higher probability of a voxel
being lesional and a faster progression rate was found in the
motor tract (ie, the bilateral CST) and two associative tracts (ie,
the bilateral SLF and the right IFOF). These results extend the
findings of previous cross-sectional studies that have found
correlations between mobility and regional MRI abnormalities
localised within the motor tract.20 21 Furthermore, the SLF and
the IFOF are two associative tracts, which are part of the
longitudinal association fibre system that connects each frontal
lobe with other regions in the same hemisphere.22 They seem to
be involved with high order aspects of motor function, as shown
in primate studies.23 Therefore, a possible interpretation of our
findings is that disruption of long associative tracts, due to the
presence of lesions, causes a disconnection syndrome that may
contribute to a more rapid deterioration of mobility.24 In fact, it
is known that disrupted white matter pathways, which play
a crucial role in the coordination of information flow between
different grey matter regions, are likely to lead to an altered
functional connectivity between regions and, ultimately, to
clinical impairment.25 Furthermore, damage in these tracts may
reduce the cortical reorganisation that originates from activation
of regions connected through these pathways, thus resulting in
a reduced ability of the brain to limit the clinical impact of
structural damage. We found that the relationship between
lesion location in the IFOF and TTE was statistically significant
on the right side only. This is in agreement with the reports of

Figure 2 Redeorange voxels show
the regions on the regression maps
where a higher probability of a voxel
being lesional on T2 images was
significantly associated with a shorter
time to event. These regions are: the
bilateral corticospinal tract (CST) (from
the cortex to the corona radiata), the
bilateral superior longitudinal fasciculus
(SLF) and the right inferior fronto-
occipital fasciculus (IFOF). In blue,
yellow and green are displayed the
courses of the three white matter tracts
(bilateral CST, bilateral SLF and right
IFOF, respectively).

Table 2 Number of lesional voxels and corresponding regional lesion
loads extracted from the three tracts containing regions that showed an
association between lesion location and time to event

Measures of regional
lesional damage Bilateral CST Bilateral SLF Right IFOF

No of lesional voxels (mean (SD)) 37.6 (58.8) 38.4 (76.1) 30.1 (47.4)

Lesion load (ml) (mean (SD)) 0.3 (0.5) 0.3 (0.6) 0.2 (0.4)

CST, corticospinal tract; IFOF, inferior fronto-occipital fasciculus; SLF, superior longitudinal
fasciculus.
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asymmetry in MS brain pathology.26 In future, the contribution
of handedness to these results needs to be explored.

The association between a higher probability of a voxel being
lesional and a faster progression rate, was independent of spinal
cord atrophy (the mean value of cord cross-sectional area in
patients is similar to that previously reported in PPMS).8 Inter-
estingly, when the correlation between lesion location and TTE
was investigated using both EDSS equal to 6 and EDSS equal to
7 as events, the same motor and associative tracts showed
significance (results not shown), suggesting that the location of
T2 brain lesions in these tracts is an important factor in
contributing to disability progression in PPMS.

When we investigated the best predictors of TTE, we found
that the regional T2 lesion volume measured in the right IFOF
was the best, independent predictor of progression. Conversely,
the T2 lesion load in the bilateral CST became a borderline
predictor, and that in the SLF became non-significant, suggesting
a preferential role of the right IFOF, perhaps through the infero-
and dorso-lateral frontal, and occipital cortices that it
connects.22 Indeed, the IFOF constitutes the inferior part of the
fronto-occipital fasciculus, that is thought to be involved in the
use of visual information for the purpose of guiding movements
and controlling motor actions.27

As previously demonstrated, the whole brain T2 lesion load did
not correlate significantly with the progression rate, supporting
the concept that in MS a proportion of the total lesion load is
clinically silent15 28e30 and is not as relevant in determining
progression as other lesions localised in strategic areas.

In contrast with our data about T2 lesions, we did not find any
significant association between the T1 hypointense lesion prob-
ability and progression rate. A possible interpretation for this
finding is that the T1 lesion load is considerably smaller than the
T2 lesion load and, therefore, tracts are less likely to contain T1
compared with T2 lesions. This, in turn, means that the range of
lesion loads within a given region is smaller for T1 compared with
T2 lesions, reducing the possibility of a correlation with clinical
outcomes. Interestingly,we found thatwhole brain T1 lesion load
was a borderline independent predictor of progression rate. This is
not surprising, since T1 hypointense lesions are known to be
histopathologically associated with severe tissue destruction31

and T1 total lesion load correlates with clinical disability in MS
more strongly than T2 lesion load.32 33

We found that the areas most likely to contain lesions were
similar in the T2-LPMs and T1-LPMs, and included the superior
and posterior regions of the corona radiata. This is interesting,
since a large number of axonal projections that contribute to the
generation of the CST converge in this region,34 and PPMS is
typically characterised by a progressive decline in motor func-
tion. A previous study reported that patients with PPMS had
a greater probability of a lesion occurring in these regions,
compared with relapsingeremitting patients.5

An interesting aspect of this study is that we performed a TTE
analysis which, in MS, has been limited to clinical trials.35 36 In
fact, TTE analysis can be easily adapted to different events as long
as the event in question is temporally defined and clinically
meaningful.37 When the event cannot be specifically dated, it is
acceptable to use the midpoint between the visit at which the
event is noted and the previous one, as the time of the event.38

However, due to our study design, the interval between visits
varied between 1 and 5 years, and 13 patients (16%) reached the
event during the 5 years which elapsed between the last two time
points.Whenwe repeated the analysis without these patients, we
found that the results were very similar to those presented here
(results not shown), and so concluded that the variability in

follow-up intervals has not significantly distorted the results.
Furthermore, the progression rate that we observed in our popu-
lation was similar to the one previously reported in epidemiolog-
ical studies in PPMS patients,39 suggesting that despite the
retrospective design of the study and the suboptimal frequency of
assessments, the definition of the clinical outcome was appro-
priate.
We have studied a large number of PPMS patients over a very

long follow-up period, recruited in five European centres.
Another potential limitation of this study is that, with the
available data,wewere not able to look for greymatter lesions40 41

that may be very relevant in contributing to long term clinical
disability. Another possible limitation of this study is the potential
for registration errors and consequent lesion location inaccuracies
related to the LPM technique. Two observers, rather than one,5 15

inspected registered lesion masks and were in agreement in all
cases. While it is to be expected that there will be some residual
misalignments, in the context of a lesion probability analysis, the
effects of this will be negligible.
In conclusion, this study has provided insights into the

mechanisms of progression in PPMS, reporting that T2 lesion
location at study entry is a major determinant of clinical
progression independent of spinal cord atrophy. Furthermore, we
have confirmed that the time to bilateral support is a useful
approach to identify those who progress more rapidly.

Acknowledgements The authors are very grateful to Dr Valerie Stevenson for her
analysis of the baseline scans and to all of the patients for participating in the study.

Funding BB is funded by FISM (Fondazione Italiana Sclerosi Multipla - 2007/B/01). OC
is a Wellcome Trust Advanced Fellow. This work was undertaken at UCLH/UCL who
received a proportion of funding from the Department of Health’s NIHR Biomedical
Research Centres funding scheme.

Competing interests None.

Ethics approval This study was approved by the local ethics committees in each one
of the participating centres (Amsterdam, Barcelona, Bordeaux, London and Milan).

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. Khaleeli Z, Ciccarelli O, Manfredonia F, et al. Predicting progression in primary

progressivemultiple sclerosis: a 10-yearmulticenter study.Ann.Neurol 2008;63:790e3.
2. Fisniku LK, Brex PA, Altmann DR, et al. Disability and T2 MRI lesions: a 20-year follow-

up of patients with relapse onset of multiple sclerosis. Brain 2008;131:808e17.
3. Ingle GT, Stevenson VL, Miller DH, et al. Primary progressive multiple sclerosis:

a 5-year clinical and MR study. Brain 2003;126:2528e36.
4. Sastre-Garriga J, Ingle GT, Rovaris M, et al. Long-term clinical outcome of primary

progressive MS: predictive value of clinical and MRI data. Neurology
2005;65:633e5.

5. Di Perri C, Battaglini M, Stromillo ML, et al. Voxel-based assessment of differences in
damage and distribution of white matter lesions between patients with primary
progressive and relapsingeremitting multiple sclerosis. Arch Neurol 2008;65:236e43.

6. Kragt JJ, Thompson AJ, Montalban X, et al. Responsiveness and predictive value of
EDSS and MSFC in primary progressive MS. Neurology 2008;70:1084e91.

7. Nijeholt GJ, van Walderveen MA, Castelijns JA, et al. Brain and spinal cord
abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical
subtypes and symptoms. Brain 1998;121(Pt 4):687e97.

8. Rovaris M, Bozzali M, Santuccio G, et al. In vivo assessment of the brain and
cervical cord pathology of patients with primary progressive multiple sclerosis. Brain
2001;124:2540e9.

9. Bieniek M, Altmann DR, Davies GR, et al. Cord atrophy separates early primary
progressive and relapsing remitting multiple sclerosis. J Neurol Neurosurg Psychiatry
2006;77:1036e9.

10. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded
disability status scale (EDSS). Neurology 1983;33:1444e52.

11. Lechner-Scott J, Kappos L, Hofman M, et al. Can the Expanded Disability Status
Scale be assessed by telephone? Mult Scler 2003;9:154e9.

12. Stevenson VL, Miller DH, Rovaris M, et al. Primary and transitional progressive MS:
a clinical and MRI cross-sectional study. Neurology 1999;52:839e45.

13. Plummer D. DispImage: a display and analysis tool for medical images. Rev
Neuroradiol 1992;5:489e95.

14. Ginestroni A, Battaglini M, Della Nave R, et al. Early structural changes in individuals
at risk of familial Alzheimer’s disease: a volumetry and magnetization transfer MR
imaging study. J Neurol 2009;256:925e32.

Bodini B, Battaglini M, De Stefano N, et al. J Neurol Neurosurg Psychiatry (2010). doi:10.1136/jnnp.2009.201574 5 of 6

Research paper

 group.bmj.com on July 15, 2010 - Published by jnnp.bmj.comDownloaded from 

http://jnnp.bmj.com/
http://group.bmj.com/


15. Vellinga MM, Geurts JJ, Rostrup E, et al. Clinical correlations of brain lesion
distribution in multiple sclerosis. J Magn Reson Imaging 2009;29:768e73.

16. Karagulle Kendi AT, Lehericy S, Luciana M, et al. Altered diffusion in the frontal
lobe in Parkinson disease. AJNR Am J Neuroradiol 2008;29:501e5.

17. Mori S, Wakana S, Nagae-Poetscher LM, et al. MRI atlas of human white matter.
Amsterdam, The Netherlands: Elsevier, 2005.

18. Nichols TE, Holmes AP. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Hum Brain Mapp 2002;15:1e25.

19. Losseff NA, Webb SL, O’Riordan JI, et al. Spinal cord atrophy and disability in
multiple sclerosis. A new reproducible and sensitive MRI method with potential to
monitor disease progression. Brain 1996;119(Pt 3):701e8.

20. Wilson M, Tench CR, Morgan PS, et al. Pyramidal tract mapping by diffusion tensor
magnetic resonance imaging in multiple sclerosis: improving correlations with
disability. J Neurol Neurosurg Psychiatry 2003;74:203e7.

21. Reich DS, Zackowski KM, Gordon-Lipkin EM, et al. Corticospinal tract abnormalities
are associated with weakness in multiple sclerosis. AJNR Am J Neuroradiol
2008;29:333e9.

22. Catani M, Howard RJ, Pajevic S, et al. Virtual in vivo interactive dissection of white
matter fasciculi in the human brain. Neuroimage 2002;17:77e94.

23. Rizzolatti G, Matelli M. Two different streams form the dorsal visual system:
anatomy and functions. Exp Brain Res 2003;153:146e57.

24. He Y, Dagher A, Chen Z, et al. Impaired small-world efficiency in structural cortical
networks in multiple sclerosis associated with white matter lesion load. Brain
2009;132:3366e79.

25. Rocca MA, Colombo B, Falini A, et al. Cortical adaptation in patients with MS:
a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol
2005;4:618e26.

26. Reich DS, Smith SA, Zackowski KM, et al. Multiparametric magnetic resonance
imaging analysis of the corticospinal tract in multiple sclerosis. Neuroimage
2007;38:271e9.

27. Schmahmann JD, Pandya DN. The complex history of the fronto-occipital
fasciculus. J Hist Neurosci 2007;16:362e77.

28. Li DK, Held U, Petkau J, et al. MRI T2 lesion burden in multiple sclerosis:
a plateauing relationship with clinical disability. Neurology 2006;66:1384e9.

29. Miki Y, Grossman RI, Udupa JK, et al. Relapsingeremitting multiple sclerosis:
longitudinal analysis of MR imagesdlack of correlation between changes in T2 lesion
volume and clinical findings. Radiology 1999;213:395e9.

30. Rudick RA, Lee JC, Simon J, et al. Significance of T2 lesions in multiple sclerosis:
a 13-year longitudinal study. Ann Neurol 2006;60:236e42.

31. van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of
hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology
1998;50:1282e8.

32. Truyen L, van Waesberghe JH, van Walderveen MA, et al. Accumulation of
hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease
progression in multiple sclerosis. Neurology 1996;47:1469e76.

33. O’Riordan JI, Gawne CM, Coles A, et al. T1 hypointense lesion load in secondary
progressive multiple sclerosis: a comparison of pre versus post contrast loads and of
manual versus semi automated threshold techniques for lesion segmentation. Mult
Scler 1998;4:408e12.

34. Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber tract-based atlas of human
white matter anatomy. Radiology 2004;230:77e87.

35. Panitch H, Miller A, Paty D, et al. Interferon beta-1b in secondary progressive MS:
results from a 3-year controlled study. Neurology 2004;63:1788e95.

36. Montalban X, Sastre-Garriga J, Tintore M, et al. A single-centre, randomized,
double-blind, placebo-controlled study of interferon beta-1b on primary progressive
and transitional multiple sclerosis. Mult Scler 2009;15:1195e205.

37. Allen C, Jiang K, Malbecq W, et al. Time-to-event analysis, or who gets better sooner?
An emerging concept in headache study methodology. Cephalalgia 1999;19:552e6.

38. Law CG, Brookmeyer R. Effects of mid-point imputation on the analysis of doubly
censored data. Stat Med 1992;11:1569e78.

39. Cottrell DA, Kremenchutzky M, Rice GP, et al. The natural history of multiple
sclerosis: a geographically based study. 5. The clinical features and natural history of
primary progressive multiple sclerosis. Brain 1999;122(Pt 4):625e39.

40. Kidd D, Barkhof F, McConnell R, et al. Cortical lesions in multiple sclerosis. Brain
1999;122(Pt 1):17e26.

41. Geurts JJ, Bo L, Pouwels PJ, et al. Cortical lesions in multiple sclerosis: combined
postmortem MR imaging and histopathology. AJNR Am J Neuroradiol
2005;26:572e7.

6 of 6 Bodini B, Battaglini M, De Stefano N, et al. J Neurol Neurosurg Psychiatry (2010). doi:10.1136/jnnp.2009.201574

Research paper

 group.bmj.com on July 15, 2010 - Published by jnnp.bmj.comDownloaded from 

http://jnnp.bmj.com/
http://group.bmj.com/

